
WL-TRD92-1022 OTIC
F! FCTE

AD-A2 48 893 APR 2 3 '992

A MODEL OF THE ADA

AVIONICS REAL-TIME SYSTEM:
An Example of the Benefits of the

Hardware/Software Codesign Approach
in Development of Real-Time Systems

Prepared by:

B. E. Clark
F. G. Gray
J. T. Morrison
T. S. White

TRW Military Electronics and Avionics Division

Dayton Engineering Laboratory
Beavercreek, Ohio

March 1992

Approved for public release; distribution is unlimited.

Prepared by:

/ Center for Digital Systems Research
Research Triangle Institute
Research Triangle Park, North Carolina 27709

and

*Virginia Polytechnic Institute

Blacksburg, Virginia 92- 0176

AVTONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

•

•

4

Best
Avai~lable

Copy

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

SEPH S. WILGUS, Project Engineer DAVID A. ZANN, Chief
Advanced Integration Group System Integration Branch
System Avionics Division System Avionics Division
Avionics Directorate Avionics Directorate

CHARLES H. KRUEGER, Chief
System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAS , WPAFB, OH 45433-6543 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

1 Fonn Appwo4e
REPORT DOCUMENTATION PAGE FoM m. ovoe o,8

Pbt,(fP0^.
9
b ,'det for tIh 4014 0 ,nfo mto'n -o , eWWW to a.eta t p li4' ..e . "Xc th€dl t] te I|,e t0, uw niww g kfltruduoms. lEafthM e~.,fsf data ,rl ,.it.

g9ite,-nq *-d -4-6-n-9 the data needed. AndMats ,evtt.fl t I t.O fl Mo nat. $end OMten t l f0ea 4 Ot but i'fsmetot ay @tii sma.f IsIel t.dn Ot ,oOIn|'. slu,Pqtt.O'flOAI~a% l[tio. ;edwsiS thi b.firO **0 WI t Iedq .ltelet.. .Liti. Dv l~ wOt 0, .1iotmate~lo~ O,.tlroot .od Repn, t t jell et
D a fl*, ye'0.*.I= .V& Jflm). sn t he Off. srof PAs..qeeet end S.dge@. Parefoth ofstfunn Po& tI1 04n. 2wa,eo. OC j~, :001

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I March 1992 ,, Final Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
A Model of the Ada Avionics Real-Time System: An F33615-87-D-1452
Example of the Benefits of the Hardware/Software Codesign
Approach in Development of Real-Time Systems PE 62204F

6. AUTHOR(S) PR 3062
TA 01

B.E. Clark, F.G. Gray, J.T. Morrison, and T.S. White Wu 11

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Research Triangle Institute
Center for Digital Systems Research N/A
P.O. Box 12194
Research Triangle Park, NC 27709

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING
Joseph S. Wilgus (513) 255-4709 AGENCY REPORT NUMBER

Avionics Directorate (WL/AAAS) WL-TR-92-1022
Wright Laboratory
Wright-Patterson AFB, OH 45433-6543

111. SUPPLEMENTARY NOTES

Prepared under Subcontract No. FF9327VOS
Prime Contract (USAF) F33615-87-D-1452 V

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 2OOwords)

The Ada Avionics Real-Time System (AARTS) Operating System (AOS) is the OS and
management system under development for the PAVE PILLAR architecture.
The AOS, in its current version, was modeled in the Architectural Design and
Assessment System (ADAS) along with the hardware and applications being
exercised in the Avionics Directorate's Integrated test bed. The report
describes the model, the results of simulation executions, and methods for
expansion of the model to architectures larger than that of the integrated
test bed.

14. SUBJECT TERMS tS. NUMBER OF PAGES
ADAS, Avionics, Modeling, PAVE PILLAR, Simulation, 184
VAMP, VHSIC Avionics Multiprocessor 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 293 tRev 2-89)

Plet.b4r0 d A S4 11d :9 -,t

Contents

List of Figures vi

List of Tables X

Symbols and Abbreviations xi

1 Introduction 1

1.1 Background 2

1.2 ADAS Model Of AARTS: An Overview 3

1.3 Acknowledgements 5

2 The ADAS Product 7

2.1 How the ADAS Tools Interact 7

2.2 Graph, Node, Arc and Port Attributes 9

3 Description: ADAS Model Of AARTS 19

3.1 Assumptions and Conventions 19

3.1.1 Assumptions 19

3.1.2 Node Name Conventions 20

3.1.3 Primitive Hardware Components 23

3.2 Hardware Model 23

3.3 Software Model 25

3.3.1 Startup Process 25

3.3.1.1 SUROM Execution and Active Loading 27

iii

3.3.1.2 SMM Response During Active Load 29

3.3.1.3 SUROM and Passive Loading of ASO 30

3.3.1.4 CPU Role During Passive Load 31

3.3.1.5 BTBIM Role During Passive Load 32

3.3.1.6 SMM Role During Passive Load 34

3.3.1.7 Arbitration 36

3.3.1.8 Loading of LPUs 37

3.3.2 System Messages 40

3.3.3 Normal Operations 43

3.3.4 Failure and Reconfiguration 46

3.3.5 Shutdown 47

3.4 Resource Utilization 49

3.4.1 Data Transmission Delays 50

3.4.1.1 Message Sizes 50

3.4.1.2 P1-bus Transmission Delays 54

3.4.1.3 High Speed Data Bus (HSDB) Transmission Delays . 56

3.4.2 CPU and SMM Delays 60

3.4.2.1 SUROM Processing and Checksum Delays 62

3.4.2.2 Message and File Services Delays 64

3.4.2.3 Other Delays 66

3.5 Flow Control 69

4 Results 80

5 Model Modification or Expansion 92

iv

6 Conclusions 97

References 103

Li

AvAtI&bljtTy Co4.e

C '~Diet esj

List of Figures

A-i The ADAS System Configuration........................ A-i

A-2 Top-Level ADAS Hardware Graph. A-2

A-3 ADAS Hardware Graph of Cluster 1 A-3

A-4 ADAS Hardware Graph of a CPU Module A-4

A-5 ADAS Hardware Graph of a Bus Interface Module A-5

A-6 Top Level ADAS Software Graph. A-6

A-7 Startup Graph A-7

A-8 BTBIM Active Load A-8

A-9 BTBIM Read LPIKATTRIBUTES File A-9

A-10 SMM Load ASO into BTBIMs. A-10

A-li1 SMM Load LPU-ATTRIBUTES File into BTBIM A-li

A-12 CPU Receive BOOT and ASO Load. A-12

A-i3 BTBIM Conduct Passive Load of Clients. A-13

A-14 BTBIM -Client Level. A- 14

A-15 BTBIM to SMM. A- 15

A- 16 BTBIM to Client A-16

A-VT7 SMM Passive Loading of 8 Modules....................... A-17

A-18 SMM Passive BOOT and ASO Load to a CPU. A-18

A-19 Arbitration by the Winner of the System Supervisor Role A-19

A-20 System Supervisor Load LPUs. A-20

A-21 PT-bus Transmission A-21

A-22 CPU Load Two LPUs. A-22

vi

A-23 CPU Load on LPU. A-23

A-24 BTB PASS Tree LPUs. A-24

A-25 BT13 PASS on LPU to a CPU. A-25

A-26 SMM Download LPUs to CPUs A-26

A-27 SMM Download on LPU. A-27

A-28 Configuration Request Placed on MAB A-28

A-29 MAB Transmission. A-29

A-30 MABIM Place Configuration Request on P1-bus A-30

A-31 System Messages Graph. A-31

A-32 Specialist System Messages. A-32

A-33 Supervisor Module System Messages A-33

A-34 Cluster Supervisor Acknowledge Ping. A-34

A-35 System Supervisor Heartbeats. A-35

A-36 Transmit Ping or Pulse A-36

A-37 P1-bus Broadcast. A-37

A-38 P1-bus Transmission with Two Outputs A-38

A-39 Datafiow of Demonstration 3 A-39

A-40 Sensoi Input A-40

A-41 Normal Operations. A-41

A-42 Cockpit Interface LPU in CPU21. A-42

A-43 Sensor Management LPU in CPU I11. A-43

A-44 Sensor Management LPU in CPU 12. A-44

A-45 Navigation LPU in CPU1 I.. A-45

A-46 Guidance LPU in CPU21. A-46

vii

A-47 DOS Interface LPU in CPU11. A-47

A-48 Detection and Reporting of Failed CPU A-48

A-49 Reconfiguration A-49

A-50 Load on LPU. A-50

A-51 Start on LPU and Transmit Configuration Report A-51

A-52 To-Level Graph of Shutdown Process A-52

A-53 Cluster 2 Shutdown. A-53

A-54 CPU Stop LPUs. A-54

A-55 Stop LPU A-55

A-56 Cluster 1 Shutdown. A-56

A-57 Pass Cluster 1 Shutdown Message A-57

A-58 Graph of a Cluster Ar'bitration Node A-58

A-59 Cluster Supervisor Load ASi A-59

A-60 Hot Backup Arbitration. A-60

A-61 Initiate the System Supervisor. A-61

A-62 System Supervisor Arbitration. A-62

A-63 Top-Level Graph for 4 Clusters A-63

A-64 Startup Graph for 4 Clusters A-64

A-65 Startup Graph of a Cluster A-65

A-66 Graph of SUROM and Active Load A-66

A-67 Graph of ASO Passive Load. A-67

A-68 System Messages with 4 Clusters. A-68

A-69 System Messages: 1 Cluster. A-69

viii

List of Tables

2.1 Display Attributes 10

2.2 Connectivity Attributes 11

2.3 Simulation Attributes 13

2.4 CSIM/AdaSIM Attributes. 15

2.5 Information Attributes. 15

2.6 Tool Output Attributes. 16

3.1 LPU Loading During Startup 21

3.2 LPU Loading Following Reconfiguration 21

3.3 ADAS hw-jnodule Names. 24

3.4 System Management Messages. 51

3.5 Messages Transmitted to and from LPUs 52

3.6 Files Services Message Lengths. 53

3.7 Files Services File Sizes. 53

3.8 P1-bus Status Words. 55

3.9 P1-bus Firing Delay. 57

3.10 HSDB Token Frame. 59

3.11 HSDB Message Frame Overhead 59

3.12 HSDB TIMING 61

3.13 Time for SUROM and Checksum Events 63

3.14 Time for Message I/O Services. 65

3.15 Time for Message and Files Services. 67

3.16 Assumed Firing Delays. 68

ix

3.17 Port Attributes - Graph of Node SUROMBTB2 69

3.18 Port Attributes - Graph of Node READLPULOC 71

3.19 Port Attributes - Graph of Node SMMASOTOBTB 72

3.20 Port Attributes - Graph of Node RDLPULOCx 73

3.21 Port Attributes - Graph of Node BTBTOSMMASO 74

3.22 Port Attributes - Graph of Node BTBTOCPUASO 75

4.1 ADAS Model: Subprocess Timing 81

4.2 Startup with Assigned Delays 83

4.3 Failure and Reconfiguration with Assigned Delays 84

4.4 Shutdown with Assigned Delays 85

4.5 Resource Utilization (Standard Delays) 86

4.6 Time for Message and Files Services (QR5 Numbers) 88

4.7 Startup with QR5 Delays 89

4.8 Failure and Reconfiguration with QR5 Delays 89

4.9 Shutdown with QR5 Delays 90

4.10 Resource Utilization (QR5 Delays) 91

4.11 Resource Utilization During Normal Operations 91

6.1 Values for Pulse Timeout 101

x

Symbols and Abbreviations

AARTS Ada Avionics Real Time System
ABI Avionics Bus Interface
ADAS Architecture Design and Assessment System
AS Address States
BIT Built-in Test
BIU Bus Interface Unit
BTBIM Block Transfer Bus Interface Modules
BTB Block Transfer Bus
CCB Communication Control Block
CPU Central Processing Unit
DA Destination Address
DDA Data Destination Address
DGS Display Generation System
DMA Direct Memory Access
ED Error Detecting (PI-Bus), End Delimiter (HSDB)
ESA Execution Start Address
FC Frame Control
FCS Frame Check Sequence
FIFO First In First Out
HCCB HSDB Communication Control Block
HSDB High Speed Data Bus
I/O Input/Output
IMFKey Integrated Multifunction Display Key
IRS Interface Requirements Specification
ISTC Initialization Sequence Try Count
LPU Loadable Program Unit
MAB Mission Avionics Bus
MABIM Mission Avionic- Bus Interface Module
mips Million Instructions per Second
MMKey Mission Mode Key
SA Source Address
SD Start Delimiter
SMM System Mass Memory
SUROM Startup ROM
TLCSC Top-Level Computer Software Components
TMT Transmission Monitor Timer
TST Transmission Streaming Timer
VAMP VHSIC Avionics Multiprocessor
VHSIC Very High Speed Integrated Circuit
VPI Virginia Polytechnic Institute
WC Word Count
WEC Westinghouse Electric Company

Xi

1. Introduction

This report describes the model developed by the Research Triangle Institute (RTI)

and Virginia Polytechnic Institute (VP,) under FRW subcontract Number FF9327VBOS.

The objective was to develop and demonstrate an executable model of configuration

and reconfguration of the Ada Avionics Real Time System (AARTS) anning on the

Wright Laboratories VHSIC Avionics Multiprocessor (VAMP) demonstration hard-

ware. The model was developed, using the Architecture Design and Assessment Sys-

tem (ADAS) delivtcred and executed using GIPSIM simulation. This report describes

the model in detail and provides examples that show the usefulness of developing

an executable model in parallel with system design. The modeling effort and model

execution serve to validate (or invalidate) design decisions as they are made.

The model was constructed from information contained in numerous AARTS devel-

opmental documents and internal documents and reference furnished by the TRW A

project manager. This was reinforced by regular technical exchange discussions be-

tween the RTI and TRW project managers. In addition to two formal demonstrations

of the model, a thorough review was conducted with the principle members of the

AARTS development team in January 1991. This review and the attendance of the

AARTS development team at the demonstrations served to verify, at each point, that

the ADAS model is a true representation of the design as it exists (or is visualized)

at that point.

This report is intended for users who want to employ the model for continuing analysis

of AARTS development and expansion and, possibly, as a point of departure for

follow-on developments. It is assuned that the reader is familiar with the basic

AARTS architecture and functioning, as well as that of the VAMPs. The report

focuses on the model - how functions are simulated, how resource utilization was

estimated, and how the execution is controlled. These subjects are addressed in

considerable detail to provide a reader, who is familiar with the ADAS tool set, with

sufficient understanding of the model so that he can make the necessary changes to

analyze the impact of changes in AARTS design, hardware capability, or function

resource requirements. It should also provide a background for expansion of the

model to a more extensive set of applications, a larger or more complex hardware

architecture, or both.

The final three sections provide examples of model outputs and analyses, an approach

for expanding the model, and the types of errors that can be detected early in the

design with an ADAS modeling effort.

1.1. Background

Under contract from the U.S. Air Force, TRW is developing the A ARTS operating

system for Wright Laboratory. AARTS is the implementation of the PAVE PILLAR

Operating System and system management concept. The AARTS is targeted for the

laboratory VHSIC Avionic Modular Processors (VAMP) being developed by West-

2

inghouse Electric Company (WEC). The ADAS model developed in this effort is to

be calibrated with AARTS Demonstration 3 and then, in a second phase, expanded to

represent the entire PAVE PILLAR mission application architecture. GIPSIM sim-

ulation of the expanded model will provide an assessment of specific hardware and

software partitioning needs to meet the PAVE PILLAR specification. Of particular

interest is the Block Transfer Bus utilization and the total time it takes to com-

plete various processes associated with system startup and reconfiguration following

module failure.

The distributed architecture of PAVE PILLAR will provide for maximum utilization

of common hardware and software programs, as well as providing maximum reliability,

maintainability, and support for both air-to-air and air-to-ground missions. During

development this model has served to highlight issues or deficiencies in early design

decisions by addressing, in a system context, hardware/software interfaces. Once cali-

brated and validated against an implemented AARTS System it will provide the basis

for simulation and analysis of the PAVE PILLAR architecture with developmental

avionics processes integrated into an expanded suite of VAMP or VAMP-like clusters.

1.2. ADAS Model Of AARTS: An Overview

The Ada Avionics Real Time System (AARTS) is the evolving implementation of

the PAVE PILLAR operating system concept. The AARTS is divided into three

top-level computer software components (TLCSCs) called executives. The kernel ex-

3

ecutive TLCSC manages the resources of a single VHSIC module. It is the operating

system for the module. The Distributed Executive TLCSC provides the services for

communication between modules. Versions of the distributed executive for CPU.

high-speed databus interface, M1553B bus interface and mass memory modules dif-

fer. The difference is normally the presence of a component associated with a specific

interface (i.e., bus) or, in the case of CPU's, the functionality needed to establish

message connections. The third major component of AARTS is the System Execu-

tive TLCSC. This component contains the software that manages the system. This

component can function as a cluster supervisor, managing a cluster of modules; as the

system supervisor; managing the system; or as a hot backup for the system supervi-

sor. The targeted VHSIC Avionic Modular Processor (VAMP) consists of five VHSIC

modules, each containing a 16-bit V1750A processor with 128 or 256K of memory.

The memory in each module has been divided into numbered address states (AS)(i.e.,

ASO, AS1, etc.). The lowest address State, ASO, is reserved for the basic operating

system. This consists of the kernel executive, the distributed executive and the kernel

unit of the system executive. This is referred to as the ASO Software throughout this

report. (Most of the lower level software components of the ASO software contain an

I/O interface unit that is resident in any address State that can call for the TLCSC

services).

Address states one and higher can contain any loadable program unit (LPU). The

system executive (less the kernel) is loaded in ASI by cluster supervisors upon winning

4

arbitration. Assumption of the role of System Supervisor or hot backup only requires

enabling additional units. This Supervisory Software is referred to as the AS 1 software

through the remainder of this report.

The AARTS development program includes several demonstrations. These demon-

strations progress from operating a single module through a several cluster effort with

dynamic LPU loading. Demonstration 3 was to be conducted on two VHSIC Avionic

Modular Processor (VAMP) clusters. The clusters are currently connected to a simu-

lated System Mass Memory and to one another via high-speed fiber optic data busses.

Each VAMP contains five processor modules that communicate with one another via

a PI-bus. The five modules consist of two CPU modules, two high-speed databus

interface modules and a M1553B bus interface module. Demonstration 3 was to start

the system, execute a guidance and navigation scenario consisting of five LPUs, and

demonstrate recovery from failure.

1.3. Acknowledgements

The development of this model was a team effort. RTI and its subcontractor. Vir-

ginia Polytechnic Institute and State University (VPI) produced the model. The

TRW Dayton Engineering Laboratory managed the RTI contract and provided data

descriptions of AARTS and Demonstration 3 without which the model could not have

been developed. Four individuals deserve particular recognition. Professor F. Gail

Gray, of the Department of Electrical Engineering at VPI, served as consultant to the

5

RTI principal investigator on methods for system abstraction and reviewed and cri-

tiqued the model at strategic points in the development. Dr. Tennis S. White, then at

VPI, currently with IBM Glendale Research Laboratory, produced the actual graphs.

Dr. White devised the control schemes to be described later in this report,. Mr.

J.L. Stautberg, of TRW Dayton Engineering Laboratory, served as project monitor

and liaison between the modeling team and the AARTS development team. Finally,

Mr. Joseph Wilgus of Wright Laboratory provided oversight and coordination of the

entire effort, a task of much more significance and value than this simple statement

can convey.

6

2. The ADAS Product

ADAS is a set of computer-aided design tools for the synthesis and analysis of soft-

ware algorithms and their hardware implementations at the architectural level. ADAS

models hardware and software using directed graphs in which nodes represent individ-

ual software operations or hardware functional elements and arcs represent data and

control flow paths. Color-coded connection points called ports indicate the direction

of flows along arcs. Nodes and arcs are typed and have a number of attributes associ-

ated with them. Nodes can be expanded into subgraphs that represent the refinement

of a software operation'or hardware component into a set of lower level operations

or components and their interconnections. Nodes with subgraphs are called internal

nodes; nodes without subgraphs are called leaf nodes.

Simulation is controlled on a graph or graph hierarchy by the movement of units

called tokens around the graphs. During simulation, nodes produce and consume

tokens and arcs act as FIFO queues of tokens.

Using this ADAS model, the user can test alternative algorithm and architecture

strategies measuring performances, latency, timing, resource utilization, etc.

2.1. How the ADAS Tools Interact

Data flows between the ADAS tools and the data base files which are illustrated in

Figure A-1. In this diagram, circles represent individual ADAS tools; directed lines

7

represent data flows between the tools and individual data base files, the contents

of which are described between paired horizontal lines; and boxes represent analysis

processes outputs. ADAS system.

The numbers on program circles in Figure A-1 represent the order in which the ADAS

tools would typically be executed during a single design cycle. The design process

typically consists of a number of iterations of the cycle. A design is analyzed and

its execution simulated, and the results are used to modify and refine the design.

This analysis/refinement process is repeated until the design's performance meets

specification. Each circle in the diagram illustrates one or more phases of the design

process:

1. EDIGRAF The directed graph editor creates the initial template and
graph data base files for the hardware and software de-
sign graphs; it is also used to make modifications to the
templates, graph structure, and node and arc attributes
throughout the iterative design process.

2. CONCH The design graph consistency checker verifies that graph
data flows are consistent (e.g., that component types
match) and optionally checks graph attribute values
against template values.

3. GIPSiM The directed graph simulator performs initial verification
of software graphs; it verifies that nodes are firing in the
correct order, that token produce and consume values
are correct, and that firing frequencies are approximately
correct.

4. XPETRI The performance analysis program generates petri net
models of software directed graphs for detailed analysis
of design performance. If the performance is not satisfac-
tory, the software can be modified with EDIGRAF, and
the design cycle repeated.

5. ASH The task allocation tool assigns hardware graph compo-
nents to software graph operations.

8

6-7. CSIM/ADASIM A design graph functional simulator generation program
constructs a program, CSIM or ADASIM, to simulate ex-
ecution of the design from functional descriptions of the
individual design graph nodes in the C or Ada program-
ming language.

8. ISPGEN/HELIXGEN Finally, a hardware design language generator constructs
a program to simulate execution of the hardware design
from functional descriptions of the individual hardware
design graph nodes in the ISPS or HELIX language.

The individual files that form the ADAS common data base are shared by the tools

that comprise the ADAS system and form the basis of the tools' integration into a

coherent system for software/hardware codesign. The data base includes template

data bases which contain representations of the basic building blocks that are used

to construct graph data bases. The latter contain the data that define the positions

and interconnections of nodes and arcs in software and hardware design graphs.

2.2. Graph, Node, Arc and Port Attributes

The behavior of the checking, mapping, and simulation tools is controlled by the

topology (connectivity) of the graphs and by attributes assigned to the graphs, the

nodes and their ports, and the arcs. The topology and attributes are assigned and/or

modified using the (EDIGRAF) graphics editor. Initially, attributes are inherited

from the default values contained in the template for the element. In this paragraph

the attributes associated with the graph objects are reviewed to provide background

for the discussion of the models in the remainder of the report.

For this discussion, attributes are divided into two major classes, those assigned by

9

the ADAS tools and not modifiable by the modeler and those assigned and modifiable

by the modeler. The latter category has been divided into six subcategories and will

be discussed first.

The first subcategory, display attributes, serve primarily to help make the graphs

readable and understandable. These attributes are listed in Table 2.1.

Table 2.1. Display Attributes

Graph Node Arc
graph-name node-name* arc-name*

node-color arc-color
node-height first-joint
node-width
node orientation fifth-joint

*Used by checking and simulation tools to identify output

Each graph, node, and arc has a name attribute. The graph name is optional text and

shows up as a banner at the top of the graph on the monitor. Any legal text entry can

be chosen for a graph name. Legal ADAS text is defined on pages 3-30 of the ADAS

User Manual [4]. The nodes and arcs are also named. These names must be unique

(the default name is the template name followed by a unique number) since they are

used extensively to identify output statistics from the ADAS tools. Node and arc

names can be any unique legal ADAS label. Legal ADAS labels are defined on pages

3-30 of the ADAS User Manual [4]. A color can be selected for each node and arc

from the ADAS 16 color palette. These colors are used to enhance understanding of

10

the graphs. The height and width of a node in grid units can be selected to improve

appearance. ADAS nodes are constructed with all input ports on one side and all

output ports on the opposite side. Node orientation representing the direction of flow

through the node can be selected as down (default), up, right, or left. An arc can be

drawn with a maximum of five joints (direction changes between the source outport

and sink inport). The coordinates of these joints, if any, are stored as arc attributes.

The second subcategory, connectivity attributes, are used primarily to support con-

version of a hierarchy of graphs into a single executable model. This model, consisting

of all of the connected leaf nodes, is referred to as the flattened graph or flattened

model. These attributes, shown in Table 2.2, are also used extensively by the checking

and validation routines.

Table 2.2. Connectivity Attributes

Node Node Port Arc
node-class inport-id token-data-type
subgraf.filename outport-id arc-template
graph-port-n umber in-token-data-type
node-template out-token-data-type

The attribte node-class indicates how the node functions in the model. It may have

value of leaf, a node which maps to a specific hardware model; internal, a node which

has a subgraph to be expanded within the executable model; or inport/outport, a

node that represents an inport/outport on the parent level graph node. If a node is

of node class internal it must have the file name for the subgraph in the attribute

11

subgraf-file.name. Port attributes are actually a part of the node data. A set of

attributes for each input and output port is contained in each node database. Since

these port attributes carry information critical to simulation and since there can be

many ports on a given node, the port attributes have been placed in a separate

column in the tables presented in this section. The first port attribute of interest

is the in(out)port-id. Inports and outports of a node are uniquely identified by a

number from zero to the number of in (out) ports minus one, clockwise for inports

and counterclockwise for outports (left to right when orientation is down). On a

subgraph of a node, there must be one graph port node for each inport and outport

on the parent node. The graph-port-number is the number of the associated port on

the parent node. Each in (out) port has an associated in(out)_token-data-type. This

data-type may be any legal ADAS identifier. Each arc has a token-data-type attribute.

This attribute must match the data-type attribute of both the source and sink ports

before a connection can be made. Finally, the checking tools will warn one if the node

or arch template identified in the attribute node-template or arc-template does not

match the node or arc. This usually occurs when attributes of a node, port, or arc

have been edited subsequent to creation and a new template has not been referenced

and/or developed.

The third subcategory is those attributes of the software model employed by the

simulation tools, particularly GIPSIM, which is the tool most applicable at this stage

to the AARTS Demonstration Model. These attributes are listed in Table 2.3.

12

Table 2.3. Simulation Attributes

Graph Node Node Port Arc
time-unit hardware.-module firingithreshold queue-size
conversion-factor execution-order token.-produce-rate

firing-delay token-consume.rate
trace-flag initial-token -count
node-user.text

Two attributes of the graph relate to the time steps used in a simulation. The at-

tribute time-unit is a label documenting the units in which firing delays are calculated

for the nodes. The attribute conversion-factor is a floating point number that relates

the time unit for a subgraph to the time unit of the parent graph. The node attribute

hardware-module for a software node contains the name of the node In the hardware

model onto which the software node is mapped. This is a many to one mapping, i.e.,

any number software nodes may be mapped to a single hardware node (resources)

but each software node may be mapped to only one hardware node. The software

node attribute execution-order is an integer establishing queuing priority for solving

hardware module contention during simulation. The node attribute firingdflay is the

number of time units the node waits once it has received its resource until the resource

is released. Alternatively, it is the time the node waits before firing (producing its

output tokens) after it is primed. The attribute trace-flag is a flag that when set gen-

erates a simulation output listing the schedule of all primings and firings of a node.

The attribute node-user-text may contain any text entered by the user. This attribute

may be accessed by CSIM or AdaSIM. If its value is set to "any," all sinmulations treat,

13

it as an OR-node (the node is enabled whenever any rather than al! of its inports

has reached its firing threshold). The node input port attributes firing-threshold and

token-consumerate, along with the output port attribute token-produce-rate, provide

the data necessary to control and synchronize execution of the GIPSIM simulation. A

node is enabled when each (any in the case of an OR-node) of its input arcs contains a

number of tokens in its queue greater than or equal to the inport firing-threshold. The

node then "contends" for its hardware resource (the attribute execution-order orders

any queue for the resource). When the resource is available the node becomes primed

and removes a number of tokens equal to the token.consume.rate from the arc queue

at each of its input ports. After a delay equal to the attribute firing-delay, the node

"fires" placing a number of tokens equal to the tokenproducerate on the arc queue at

each output port. At this point the next enabled node in the hardware model queue,

if any, can be primed. To initialize feedback loops or for other scheduling purposes,

it is often necessary to place one or more tokens in an arc queue at the start of the

simulation. This is accomplished with the input port attribute initiaLtoken-count.

The arc attribute queue-size limits the number of tokens that may exist at any time

in the arc queue. If firing of a node would result in exceeding queue size on an) arc

for which it is the source, the node is "blocked" and may not be primed until this

condition is removed.

Five attributes are employed by functional simulations, but not by GIPSIM. These

attributes are listed in Table 2.4

14

Table 2.4. CSIM/AdaSIM Attributes

Node Node Port Arc
package-file-name intoken-data-type token-data-type

out-token-data-type token-units

The port and arc attributes identify "types." The node attribute package-file..amic

identifies the module source file to be used by CSIMGEN, AdaSIMGEN, HELIXGEN,

and ISPGEN for simulation generation.

Table 2.5 contains a list of attributes used primarily for storage of user information.

The functional simulations can be made to access these attributes as part of the

simulation. For each graph, node, and arc there are four attributes provided to store

a floating point number, an integer, text. o d file name.

Table 2.5. Infoiratici Attributes

Graph Node Arc
graph-user-float node-iiser-float arc-user-float
graph-user-text node-user-text arc-user-text
graph-user-integer node.user.integer arc-userinteger
graph-user-file-name node-user-file-name arc.user-file-.name

Finally, one node attribute, rnodule-class, assigns hardware and software nodes to

user labeled classes. This attribute specifies the hardware module class to which a

software node may be mapped by the automatic software to hardware mapping tool.

ASH.

15

The second category consists of those attributes written to the database by the simu-

lation tools. These attributes are updated by the simulation program. Node and arc

attributes indicating activity or activity level can be displayed by color coding (cold

to hot colors) on the graphic screen. The screen is constantly updated with these

color codes during a simulation run providing an animated picture of what is going

on. The program produced attributes are shown in Table 2.6.

Table 2.6. Tool Output Attributes

Node Arc
node-utilization current-token-count
module-utilization averagetoken-count
node-latency maximum-token-count
times-fired token.arcess _count
when _next _availab le
simulation.-status
status.message

The attribute node-utilization gives the percent of the time units during the sim-

ulation that the node was busy. The attribute module.utiization is the same as

node.utilization for a hardware graph. For a software graph module-utilization is the

utilization of the hardware module to which the node is mapped. Node-latency is the

earliest time that a node can finish execution. The attribute times-fired is the number

of times a node fired during the simulation.

The attribute when.next-available is the time unit, in the execution cycle during which

the hardware node (or the hardware module associated with a software node) becomes

16

available. A value of zero indicates the module was never used. A value less than

the current simulation time indicates the module is not in use and has been available

since the time indicated. A value greater than the current time indicates the module

is in use and will not become available until the time indicated.

The attribute simulation-status shows the node's status at the end of the simulation.

This attribute may have a value of:

" INIT - node has not been blocked, primed or enabled yet.

* BLOCKED - node cannot fire (reason given by statusmessage attribute).

" PRIMED - node is primed.

" INACTIVE - node is set to non-firable by a user (by a procedure in CSIM or

AdaSIM).

" ENABLED - node is enabled.

The status-message attribute is a short text message describing why a blocked node

is blocked.

Four arc attributes are set by the simulation program. These four are the cur-

rent-tokencount on the arc's queue when the simulation ended; the average number

of tokens on the arc's queue at any point during the simulation; the maximum number

of tokens in the arc's queue at any point during the simulation; and the number of

17

times tokens were placed into or removed from the arc's queue by its source and sink

nodes during the simulation.

18

3. Description: ADAS Model Of AARTS

The focus of the ADAS model was on the performance of the I/0 and message

passing services of AARTS, rather than the run time system itself. A complete set of

design specifications was provided by TRW. Documentation was also provided for the

target hardware, the Block Transfer bus, the PI-bus, and the VHSIC modules. From

this documentation and discussions with TRW engineers, RTI and VPI developed an

ADAS model representing the AARTS process.

This description of the ADAS model is organized into major processes before, during,

and after reconfiguration, namely, (i) the startup process, (ii) the system messages

component, (iii) normal operations, (iv) reconfiguration following failure of a CPU,

and (v) the shutdown process.

3.1. Assumptions and Conventions

3.1.1. Assumptions

The ADAS model assumes that the Block Transfer Bus Interface Modules (BTBIMs)

in each cluster will be actively loaded (loaded over the HSDB) with their entire

software load. Following this, each BTBIM will support passive loading (loading

over the PI-bus) of the remaining modules in their cluster. The first modules to be

passively loaded are the Mission Avionic Bus Interface Modules (MABIMs). This

ensures that inter-cluster communication will exist before the arbitration process

19

commences and prevents the likelihood of two separate system supervisors being

established.

In the model, the sequence of loading ASO into the CPU modules is controlled. This

predetermines the system supervisor (CPU22). This controlled sequencing also pre-

determines the system hot-backup, (CPU12). As presently configured, the model

assumes that the loading of ASO is sequential. That is, the entire file is loaded, check-

summed and started in one module before the load of the next module commences.

In the ADAS model an effort was made to balance, by size, the loading of LPUs into

the CPU modules. After CPUl1 fails, the three LPUs originally loaded into CPUll

are distributed over the three remaining CPU modules during the reconfiguration

process. All modules, however, are loaded with ASO (80K). Table 3.1 depicts the

allocation of LPUs at system startup while Table 3.2 depicts the allocation of LPUs

following system reconfiguration.

3.1.2. Node Name Conventions

The format for naming the nodes throughout the ADAS model is

NODE.NAME[instance-number]

where instance-number can range from 0 to the number of times that the node name

appears within a single graph minus 1. If a particular node name appears only once

20

Table 3.1. LPU Loading During Startup

Module LPU Size LPU Name LPU Designation
CPU11 13K Navigation LPU1
CPUl1 13K Sensor Management LPU2
CPU11 17K Display Generation LPU3

System (DGS) Interface

CPU12 80K AS1 Hot Backup

CPU21 21K Cockpit Interface LPU1
CPU21 17K Guidance LPU2

CPU22 80K ASI System Supervisor

Table 3.2. LPU Loading Following Reconfiguration

Module LPU Size LPU Name LPU Designation

CPU12 80K AS1 Hot Backup
CPU12 13K Sensor Management LPU1

CPU21 17K Guidance LPU1
CPU21 21K Cockpit Interface LPU2
CPU21 17K Display Generation LPU3

System (DGS) Interface

CPU22 80K ASI System Supervisor
CPU22 13K Navigation LPU1

21

within a single graph, then it will not have an instance-number appended to it.

Throughout the model all primitive processes are consistently named to represent

the particular process they are intended to represent. For example, the node named

PiBUS represents the time and resources that were utilized during actual transmission

on a PI-bus. Where possible, nodes have been color-coded to indicate the type of

resource they consume.

In some instances it is necessary to either (i) copy a single token to multiple sink

nodes - in this case a split node is used, (ii) merge multiple arcs into a single arc - in

which case a join node is used, or (iii) delay the token for a specific period of time -

in which case a delay node is inserted between the two primary nodes.

Since split and join nodes provide flow redirection only, they do not utilize resources.

The hw.module attributes for all split and join nodes are set to na, and their fir-

ing-delay is set to 0.0. They do not perturb the overall simulation timing.

The delay nodes receive a specified firing-delay equal to the delay between events for

each event repetition they represent. For example, a process that cycles at- 8Hz will

have a delay representing the 0.125 seconds between consecutive executions. It is

necessary that all delay nodes within the model have a resource available at the time

the delay commences. For this reason, all the delay nodes are assigned a dedicated

hwbmodule. These are named delayl ... delayn, where "n" is the number of delay

nodes that appears throughout the entire ADAS model. In the simulation report

22

(sim.out), all statistics gathered on the delayl ... delayn resources may be ignored.

3.1.3. Primitive Hardware Components

The ADAS model of the AARTS Demonstration-3 considers the modules listed in

Table 3.3 to be primitive hardware resources. Their utilization is considered in the

final simulation analysis. This might be called the degree of granularity or resolution

of the ADAS model. Since there are two clusters in the AARTS Demonstration

System, it is necessary to make a distinction between the two. Therefore, the names

of all hardware modules incorporate a cluster number as well as an optional instance

number, as follows:

hwmodule[cluster-number] [instance-number]

Table 3.3 describes what each of the hw.modules used in the ADAS model represents.

3.2. Hardware Model

The top-level ADAS hardware graph of the AARTS Demonstration System (refer to

Figure A-2) contains nodes representing the MAB, BTB, M1553B, Clusterl, Cluster2,

System Mass Memory, Pilot Input, Sensors and Display Generation Interface.

Both Clusterl and Cluster2 are internal nodes and expand into subgraphs. Figure

A-3 is one of these subgraphs. This graph depicts the modular components of a

VAMP. The graph includes the five modules, the two PI-busses, and the interfaces

23

Table 3.3. ADAS hw-.module Names

Module C!Luster# AXASHW Name
CPU I I CPllp
P1-bus lU Cpu 1 I CPUIIPIBIU
CPU 2 1 CPU12CPU
P1-bus IU Cpu 2 1 CPU12PIBTU

CPU 1 2 CPU21CPU
P1-bus IU Cpu 1 2 CPU21PIBIU
CPU 2 2 CPU22CPU
P1-bud lU Cpu 2 2 CPU22PIBIU

CPU in MABIM I MABiCPU
P1-bus lU in MABIM 1 MABIPIBIU
MABIU for MAB1M I MABiBIU

CPU in MABIM 2 MAB2CPU
P1-bus IU in MABIM 2 MAB2PIB1U
MABIU for MABIM 2 MAB2BIU

CPU in BTBIU 1 BTBiCPU
P1-bus 1U BTBIM 1 BTBlPIB!U
BTB 1U for BTBIM I BTB1BIU

CPU in BTB1M 2 BTB2CPU
P1-bus lU BTBIM 2 BTB2PIB1U
BTB IU for BTBIM 2 BT82BIU

CPU in M1553B I M1553BICPU
P1-bus lU M1553B I M1553BIPIB1U
M1553B Bus 1U 1 M1553BIBlU

CPU in M1553B 2 M1553B2CPU
P1-bus lU M1553B 2 M1553B2PIB1U
M1553B Bus IU 2 M1553B2BIU

System Mass Memory 5MM
The Block Transfer Bus BTB
The Mission Avionics Bus MAB
The P1-bus I PI-busl
The P1-bus 2 Pl.bus2
All split and join nodes na
All delay nodes _____delayl ...delayn

24

to the M1553B, MAB, and BTB busses (represented by graph in and out ports).

Each module on this level expands into a subgraph. Figure A-4 and Figure A-5 show

a CPU and Bus interface module subgraph respectively. The components in these

graphs are the lowest level of resources used in the ADAS simulation.

3.3. Software Model

The basic structure of the software model is shown in the top-level ADAS software

graph of the AARTS Demonstration System (Figure A-6). It is comprised of five

major components: STARTUP, NORMALOPERATIONS, SYSTEMESSAGES, RECONFIGU-

RATION and SHUTDOWN. The simulated flow of operat.ion of the ADAS model is

STARTUP, follo-W ' by NOR.MALOPERATIONS. Upon the simulated failure of CPU11,

RECONFIC U RATION is simulated while non-failed processes continue to function in

the NORMALOPERATIONS hierarchy. This is followed by a reconfigured NORMAL-

OPERATIONS. Finally, a Pilot mode change input triggers shutdown of the system.

SYSTEMESSAGES which simulates the messages associated with management of the

system commences as the AARTS software is loaded and continues for the entire

operation. Nodes SENSOR and PILOTINPUT are a part of NORMALOPERATIONS.

3.3.1. Startup Process

The startup graph, Figure A-7, is arranged in four columns of nodes representing

separate phases of the startup and configuration process. Each column contains a

25

node for each module involved in the particular phase. The middle row of nodes

represents the activity of the SMM during each phase with cluster 2 and cluster

I activity being represented above and below this middle row, respectively. For

example, referring left to right in the middle row of Figure A-7, SMM will first load

the ASO (address state 0) software into the BTBs (node SMMASOTOBTB), then load

the ASO software into the other cluster modules, (SMMASoCPUS). It then loads the

AS1 (address state 1) software into supervisory modules, (SMMAS1CPUS), and finally

loads the LPUs (loadable program units) into available CPUs, (SMMLPULOADS). One

would not normally represent this much detail on a single high-level graph. In this

case, the detail is included to facilitate model understanding and demonstration.

All nodes on the STARTUP graph have subgraphs except the graph inport and out-

port nodes, the power-on delay nodes, the sUROM...x nodes for passively loaded mod-

ules, and the ENDSTARTUP node. The four phases of the startup process represented

by the columns from left to right are:

" Execution of SUROM (Startup ROM) and BIT and active loading (loading over

the BTB) of the BTBIM modules

" Passive loading (loading over the PI-bus) of the bootstrap loader and ASO soft-

ware into the remaining modules

" Arbitration for supervisory roles and loading of the ASI software into supervi-

sory modules

26

* Loading of the LPUs

Each of these phases is discussed in a separate section following this introduction.

3.3.1.1. SUROM Execution and Active Loading

The five modules per cluster each load and execute a startup ROM (SUROM) upon

power up. Upon completion of the built-in test (BIT) and sensing of the appropriate

discrete, each module, except the BTBIM's, moves into the second column (Figure

A-7) where it transmits a ready message, while waiting to be loaded with their boot-

strap loader. For the BTBIMs, after SUROM is executed, the module actively loads

the ASO software and the Block Transfer Bus (BTB) driver software. They then

download the LPU attributes file. After completion of the download, the BTBIM

moves into the second column where it loads the other modules in the cluster.

This process for a Block Transfer Bus Interface Module (BTBIM) is represented by

nodes SUROMBTBx in the STARTUP graph. The nodes SUROMBTBx expand into

subgraphs, which contain 4 separate functional areas (Figure A-8):

" run SUROM, initialize BTB interface, wait for token, and signal SMM that the

BTBIM is ready for loading

" receive the 4-word response from SMM

27

* receive the ASO from SMM in 4K blocks and run a checksum on it once the

download has completed

* open, then read the LPUATTRIBUTES file from SMM

The ADAS graph in Figure A-8 shows that upon completion of SUROM tests (nodes

STARTSUROM, SETUPBTBDOWNLOAD and BTBBIUO), the BTBIM transmits a 2-word

message (nodes BTB, XMITREADY and BTBIU1) via the BTB to the the System Mass

Memory (SMM) at a 10Hz frequency (controlled by node delay). The BTBIM receives

(RCV4WORD and BTBBIU2), a 4-word message indicating the destination address, size,

expected checksum, and execution start address of the BTB software that will follow

from the SMM. Following receipt of the 4-word message, the BTBIM begins to receive

the ASO data in 4K word blocks (represented by nodes RcvAsO and BTBBIU3). These

nodes will execute 20 times, representing the receipt of twenty blocks of data. The

BTBIM runs a checksum once ASO is loaded (node RUNCHECKSUM) and then proceeds

to activate the subgraph of node READLPULOC.

Node READLPULOC is an internal node. The subgraph is shown in Figure A-9. This

graph contains four functional areas:

* BTBIM transmits open LPUATTRIBUTES file request to SMM (nodes OPENLPU-

LOC, WAIT4TOKENO, BTBO and XMITOPEN)

" BTBIM receives the SMM response, then transmits a read request to SMM

(nodes RCVRESPONSE, READLPULOC WAIT4TOKENI, BTBI and XMITREAD)

28

" BTBIM receives the LPUATTRIBUTES file (node RCVDATA)

" BTBIM receives the status of the transmission from SMM (node RCVSTAkTUS)

3.3.1.2. SMM Response During Active Load

The node SMMASOTOBTB in Figure A-7 expand' the subgraph in Figure A-10.

This graph represents the SMM response to the B I BIM's transmissions. The SMM

first loads the BTBIM software into BTBIM2, the right half of the graph, and then

into BTBIM1, the left half of the graph. In Figure A-10, the node WA T4TOKEN2 rep-

resents the token-wait time before SMM can transmit the 4-word message to BTBIM2.

The actual transmission of the 4-word message is represented by node XMITDATA1.

The loop consisting of nodes WAIT4TOKEN3, BTB1, split3 and delay represents the token-

wait time, utilization of bus resources, a split to send off tokens to different recipi-

ents, and an interblock delay respectively during the twenty consecutive 4-kilobyte

data transmissions of ASO to BTBIM2. Node WAIT4TOKEN delays while the token is

received from the preceding station on the ring. Since the guidance was to assume

serial loading of the BTBIMs, this delay represents the token passage around the ring

to the predecessor node. Following completion of the ASO load to BTBIM2, the SMM

responds to the open and read LPUATTRIBUTES file requests from BTBIM2. This

response is simulated by the subgraph of node RDLPULOCI, (Figure A-11). The two

principal areas of snimurdlpuattribs.suig are: receive the open request and t ransmit a

response; receive a read request and transmit the LPIUATTRIBUTES file. followed

29

by a read status.

After BTBIM2 receives the ASO download, the SMM commences to load BTBIMI.

The arc connecting node split3 to WA1 'OKENO in Figure A-10 is used to signal the

completion of the BTBIM2 load and initiate the BTBIM1 load.

3.3.1.3. SUROM and Passive Loading of ASO

The non-BTBIM modules, upon completion of SUROM tests, each transmits a 2-word

message on the PI-bus at a 1Hz interval. This 2-word message contd%s the address

and module type. It represents a repeating request to the BTBIM for a download of

its bootstrap loader. The SUROM nodes for non-BTBIM modules (Figure A-7) are

leaf nodes and are assigned a firing-delay representing the entire SUROM processing.

The BTBIM receives the 2-word message on the Pi-bus. It then determines and

then transmits the correct 4-word message to the requesting module. This 4-word

message consists of word count, data destination address, execution start address,

and expected word count. The BTBIM will subsequently broker the download of

the bootstrap loader from the SMM (via the BTB) to the requesting module (via the

PI-bus). Three separate ADAS graphs hierarchies are required to depict the following:

" the requesting module's activiLy during ASO load

" the dual communication maintained by the BTBIM - communicating with

SMM, via the B4B, while simultaneously communicating with the requesting

30

module, via the PI-bus

* the SMM role during the non-BTBIM module load of the bootstrap loader and

ASO

The loading of the bootstrap loader and ASO is the same for all non-BTBIM modules.

The loading of CPU22 by BTBIM2 will be discussed in detail.

3.3.1.4. CPU Role During Passive Load

Figure A-12 is the graph of node ASOCPU22 on the startup graph (Figure A-7), which

represents the requesting CPU processes during the passive loading. This graph

simulates the following functions:

* Upon successful completion of BIT, the module commences periodic transmis-

sion of the 2-word message (left column)

9 The module then receives the 4-word message and sets up for download (2nd

column)

* After receipt of the bootstrap loader, the module opens the ASO file (3rd col-

umn)

* Upon receipt of the open file response (node RCVASORESP), a read request is

transmitted. This is followed by a data block, (node RCVASODATA) and theii a

31

read status message (again on node RCVASORESP) which initiates another read.

This continues until the last block of ASO is received.

" Upon receipt of the last read status for the ASO file, a checksum is run, (node

CHECKSUMASO). After a successful checksum the ASO software is started (the

outport starts appropriate system messages).

" After ASO is started, the module opens, reads, and checksums the LPU at-

tributes file and passes into the arbitration column of the parent graph.

3.3.1.5. BTBIM Role During Pnssive Load

Node ASOBTB2 in Figure A-7 is an internal node. Its subgraph (Figure A-13) con-

tains four internal nodes representing the other four modules in the cluster. All four

nodes have the same subgraph hierarchy. Each of these nodes expands into the sub-

graph shown in Figure A-14. At this level the two distinct communication channels

for BTBIM2 are represented by internal nodes BTBTOSMMASO (to the SMM), and

BTBTOCPUASO (to the CPU).

Figure A-15 is the expansion of node BTBTOSMMASO. It represents the flow to the

SMM. There are three processes represented on this graph.

9 Own receipt of the two-word message from the CPU, the BTBIM builds the

appropriate 4-word response and transmits it to the CPU. Actually, the token

32

travels over the arc between the two nodes on the parent graph. Transmission

to the CPU module is represented in the graph discussed in the next paragraph.

" Along with transmission of the 4-word response, the BTBIM transmits an open

file message for the bootstrap loader to the SMM. Upon receipt of the open file

response from the SMM, the BTBIM transmits a read message to the SMM.

All subsequent responses from the SMM are acted on in the subgraph discussed

in the next section.

" Following receipt of the bootstrap loader, the CPU issues open and repeated

read commands to obtain its load. Forwarding of these commands to the SMM

is represented by the left-hand column of the graph.

The subgraph of node BTBTOCPUASn (Figure A-16) represents the following sequential

BTBIM processes.

" Once the correct 4-word message for the CPU has been determined, the BTBIM

transmits the message to the CPU (left column)

" After the read command has been issued for the bootstrap loader, the BTBIM

receives the file from the SMM and transmits it to the CPU via the PI-bus

(nodes RCVBOOT, XMITDATAO, CCBEXECUTION2, PIBUS2 and BTBPIBIU2). This

is followed by a read status message (node RCVBOOTRESP)

" The column headed by node RCVFILERESP represents the passage of the open

33

file response and read status messages as the CPU reads the ASO software in

4-k blocks. The column headed by node RCVASo represents the passage of the

data blocks. These two columns alternate as tokens are received from memory

until ASO download is complete.

a When the SMM responds to an open LPU.ATTRIBUTES file request by CPU22.

the BTBIM transmits first the response (node RCVATTRIBRESP) then the

LPU.ATTRIBUTES file to the CPU (node RCVATTRIB). Finally, the read status

is forwarded, again through node RCVATTRIBRESP.

3.3.1.6. SMM Role During Passive Load

Figure A-17 is the subgraph of node SMMASOCPUS on the startup graph (Figure A-7).

The graph inports and outports represent tokens arriving from and passing to the

appropriate BTBIM. The internal arcs enforce the policy of sequential loading of the

modules. All nodes except the first and last on Figure A-17 expand into the same

subgraph which is shown in Figure A-18.

On Figure A-18, nodes inporto and outportl are the connections to the preceding and

following nodes respectively of the parent graph (the internal arcs on that graph).

Nodes inportl and outportO carry the tokens between the SMM and the BTBIM. This

graph contains six primary functions:

* The left column executes when the BTBIM requests opening of the bootstrap

34

loader file. It returns the open file response to the BTBIM.

" Upon receipt of the read bootstrap loader message, the second column is exe-

cuted passing the file followed by a read status message.

* The center column receives the open file requests for both the ASO and for the

LPU attributes file and returns an open file response (it is a duplicate of the

first column).

" The reads for each 4K block of ASO enter the fourth column and follow a path

over to and through the second column. This takes advantage of the fact that

the bootstrap loader is also a 4K block.

" The remainder of the 4th column is inactive in the current simulation. It would

simulate transfer of the final short block of a file that does not divide exactly

into 4K blocks. The additional column would be needed to account for the

different bus and interface utilization of the shorter message. This column has

been included in the current model to provide flexibility and to demonstrate

how similar columns would be placed in the BTBIM and CPU portions of the

model to simulate loading a file of a different size.

* The final column represents the transmission of the LPUATTRIBUTES file

followed by a read response. Again, it is a duplicate of other columns except

for the resource usage simulated.

35

3.3.1.7. Arbitc4..,on

The arbitration process follows completion of ASO loading. CPU22 is the first CPU to

receive and execute the ASO software, and it will (as the model is currently configured)

become the system supervisor module. The subgraph of node ARBCPU22 on the

startup graph (Figure A-7) is shown in Figure A-19. All four process nodes oil this

graph have subgraphs. Some will not be described in detail. Figure A-19 depicts the

four stages of arbitration:

* Node ARBCLUSTER represents the issuance of five cluster supervisor heartbeats.

The feedback loop containing the delay controls the timing of the heartbeat.

" After "winning" cluster supervisor arbitration node LOADAS1 is activated. The

subgraph of this node is similar to the one for loading ASO (with the 2- and 4-

word messages, the bootstrap loader, and the loading of the LPUATTRIBUTES

file deleted). This is supported by analogous BTBIM and SMM hierarchies.

* Upon starting the ASI software, the hierarchy below node ARBHB commences

execution. The subgraph hierarchy of this node is similar to node ARBCLUSTER

except that heartbeats are transmitted on the MAB and provision is made to

stop the hot backup heartbeat upon assumption of the system supervisor role

(the feedback loop from node ASSUMESYSSUP).

" After 5 successful hot backup heartbeats, node ASSUMESYSSUP is activated and

five system supervisor heartbeats are issued. When this is completed, the hot

36

backup heartbeat is stopped, a token is passed to the system messages function

to commence the supervisory messages, and a token is passed to node LPUCPU22

on the startup graph.

CPU12, in the meantime, assumes the role of clusterl supervisor and once it detects

the absence of the hot-backup pulse, which ceased when CPU22 became system super-

visor, it (CPU12) assumes the role of hot-backup. The token passed on node tocpu12

initiates hot-backup arbitration in CPU12.

3.3.1.8. Loading of LPUs

After completion of the arbitration process, the simulation proceeds to the loading of

the LPUs, the right hand column of the startup graph (Figure A-7). This is triggered

by the transmission of a CONFIGREQUEST message by the system supervisor,

CPU22. The individual cluster supervisors relay the CONFIGREQUEST to the

other CPUs within the cluster via the PI-bus. The loading of individual LPUs follows

in a manner similar to the loading of ASO and ASI, with the BTBIM brokering all

transfers from SMM to the CPU.

Figure A-20 is the subgraph of node LPUCPU22, the system supervisor node. The left

two columns plus node RCVDATA at the top of column 3 simulate downloading the mis-

sion database file. The remainder of column 3 and lower portion of column 4 simulate

the generation and issuance of the configuration commands. Node CLUSTERIACTIVE

37

is the connection to node CLIACTIVE on the parent graph. This connection prevents

configuration from starting until all modules have loaded and started the ASO Soft-

ware. The upper portion of column 4 simulates receipt of the configuration reporls

upon completion of the LPU loads.

Node PI-busO through Pl-bus3 all have subgraphs that look like Figure A-21. One

graph like that in Figure A-21 has been prepared for each pair of modules that ex-

change PI-bus messages (the hardware modules on which the nodes are to be mapped)

and for each size of message exchanged (the amount of resource used). This graph is

referenced in the node attribute subgraph-filename for each exchange of a message of

that size between those two modules, and a copy is incorporated into the flattened

graph upon starting the GIPSIM simulator. This ability to share graphs in an ADAS

model helps control the size of the model database. This feature was seen earlier

in this report where the same hierarchy is used four times in the BTBIM portion of

the ASO load and the same graph used six times in the SMM portion. One could

employ a single graph file like Figure A-21 for all message exchanges and use a script

file on startup of the simulation (GIPSIM, CSIM or AdaSIM) to assign the hardware

mapping and firing delay for the nodes in the various instances in the model.

Figure A-22 shows a CPUs response to the configuration request. message. In this

case, two LPUs are loaded and a status report is returned to the cluster supervisor.

The CPIU portion of the loading of an LPU is represented by the subgraph of node

READIPU1 shown in Figure A-23. This is similar to the loading of ASO shown in

38

Figure A-12 with the 2- and 4-word messages, the boot, and the LPU attributes file

deleted. The CPU issues an open file message, left column; receives a response and

issues a read (second column); and then alternates between node RCVDATAo and the

second column as the 4K blocks are received. The final short block executes node

RCVDATA1. Receipt of the final read status message initiates node RUNCHECKSUM.

Figure A-24 is the subgraph of node BTB2LPULOADS on the startup graph. It contains

an internal node for loading the mission database into the system supervisor and one

for each of the two LPUs to be loaded into CPU21. Figure A-25 is the sibgraph of

node CP21READ1PU1. From left to right the columns pass on the CPU open and read

messages to the SMM, the SMM response messages to the CPU, the 4K data blocks

to the CPU, and the short data block to the CPU.

Figure A-26 is the subgraph of node SMMLPULOADS on the startup graph. It contains

an internal node for each LPU. For like size LPUs, a single subgraph file has been

used. Figure A-27 is the subgraph of node LPU1CPU21. From left to right the colunmns

respond to the open message, respond to the read requests for 4K blocks, and respond

to the read request for the short block.

Figure A-28 is the subgraph of node LPULDMAB2 on the startup graph. This graph

simulates the MABIM in cluster 2 receiving the configuration request message from

the system supervisor (bottom of third column in Figure A-20), and transmitting

it to the MABIM in cluster 1. The token entering this graph on node inport is the

39

token that was passed upon completion of the MABIMs loading of ASO (see arc

on Figure A-7. The token entering on node fromCP22 is the one passed from ,iod,

LPUCPU22 to node LPULPMAB2 on Figure A-7. Node MAB is an internal node. Its

subgraph, Figure A-29, is similar to and employed in the same way as the P1-bus

subgraph (Figure A-21).

Figure A-30 is the subgraph of node LPULDMAB1 on the startup graph. It receives

tne token from node join in Figure A-29 and transmits it on the PI-bus to the chster

supervisor in cluster 1 (CPU12). Node PIBUS has a subgraph like that in Figure A-21.

3.3.2. System Messages

Returning to the top level graph (Figure A-6), node SYSTEMESSAGES contains the

graphs that simulate the establishment of connections for and passing of commands,

reports, and pings or pulses necessary to manage the system (except for the actual

passage of configuration or shutdown request and report messages which have been

modeled in these startup, reconfigure, and shutdown portions of the model).

Figure A-31 is the subgraph of node SYSTEMESSAGES. The eight nodes at the bottom

contain the activity of the eight specialist modules. These nodes are started upon

receipt of a token on the graph inports as0startedx and terminate with a token on graph

inport startreconfig (actually should be named "failure") for node c(uli and froniShlit-

downx for the others. The two nodes at the top contain the activity of the supervisory

modules. The supervisory module nodes have an additional set, of functions that start

40

upon loading of the AS1 software.

Figure A-32 is the subgraph of node cPui on the system messages graph. Upon

starting of the ASO software, various message receive and transmit connections are

made. This is shown on the upper portion of the graph. Upon completion of the

connection for the ping message, the module starts periodic transmission of the ping

(I'm ready) on the PI-bus. This is simulated in the left hand loop with a hierarchy

below node XMITCLUSPING. When the ping is acknowledged by the cluster supervi-

sor inport fromCPU12, the ping is halted (a series of inport tokens from node spriu

to node ORO "chokes" the loop) and the module pulse (heartbeat) is started. Inport

stop terminates the pulse on shutdown in the same way the ping is terminated. We

will describe the simulation of the transmission (nodes XMITCLUSPING and XMIT-

MODPULSE) in the description of the u/c transmission of supervisor heartbeats. One

additional feature of the model is shown by the two nodes below node XMITMOD-

PULSE on this graph. For messages that do not elicit a response, the entire process,

including receipt of the message by the addressee, is modeled in the subgraph of the

initiating process. This reduces the number of arcs on the higher level graphs.

Figure A-33 is the subgraph of node CPU22 in the system messages graph (Figure

A-31). The top portion is the establishment of message connections upon starting the

ASO software. The initial pings and pulses for the supervisory module are modeled

in arbitration graphs in the startup hierarchy. The bottom portion of the graph is

started when the ASI software is started in the cluster supervisor. A series of connec-

41

tions are made. These, since they are system-wide connections, require transmission

of the channel array to the MABIM (nodes OR, XMITARRAY modules an, MAPT;P-

DATEARRAY). Node XMITARRAY has a subgraph hierarchy similar to those shown in

Figure A-28 and A-29 with the transmission being on the PI-bus ratiCr Lhan the

MAB.

Node CLPINGACK receives and acknowledges the pings from the other modules in the

cluster. Its subgraph is shown in Figure A-34. Once the connections are established

(top two nodes), each ping receives a response. This, it turns out, is immediate

for the CPU, MABIM and BTBIM modules since they are pinging before the ASI

software initial reading suggests ASO is started is started in the cluster supervisor.

The M1553B module receives a response to its first ping. It does not complete the

ASO load until after the ASI software is started in the supervisor model. The four

nodes, PIBUS2x, each have a PI-bus transmission subgraph.

Figure A-35 is the subgraph of node CLPULSES on the System supervisor graph. This

figure combines the syst,,m bupervisor (left column) and cluster supervisor heartbeats.

The loops are similar to those for the ping and pulse on the specialist node graph (Fig-

ure A-32) with the transmissions being stopped during shutdown by nodes inporti and

splito. After the message connections have been established, the pulse transmission is

commenced.

Figure A-36 is the subgraph of node XMITPIBCLPLS. This same graph (nodes mapped

42

on different hardware) is found below the xmit ping and xmit pulse nodes on the

specialist subgraphs. Node PIBUS, of course, has a transmission subgraph. In Lhis

case, since there are multiple addressees, it is different from the point-to-point one.

This graph is shown in Figure A-37. Node XMITHSDBCLPLS in Figure A-35 transmits

the pulse to the MABIM. XMITHSDBCLPLS has a subgraph like Figure A-36 with the

PI-bus sub-subgraph shown in Figure A-38. This differs from Figure A-21 only in

having a second outport that feeds the loop for the repeated message. Node MAB2 on

Figure A-35 transmits the pulse to the MABIM in the other cluster. The hierarchy

below node MAB2 is the same (except for a single graph inport) as that shown for the

configuration request in Figures A-28 and A-29. Similarly, the hierarchy below node

MABI which transmits the message to CPU12 (the hot-backup) is equivalent to that

shown in Figure A-30 with a PI-bus transmission subgraph.

3.3.3. Normal Operations

During normal operations the system messages and LPUs are running with LPUs

receiving inputs from the pilot and the sensors. Figure A-39 is a data flow diagram

of the demonstration th;.e applications. Referring to the AARTS top-level graph

(Figure A-6) during norlnal operations, nodes SYSTEMESSAGES, which conmenced

during startup; NORMAL OPERATIONS, whose execution is triggered by completion of

startup; SENSORS; and PILOTINPUT are executing.

Figure A-40 is the graph of node SENSORS. The simulation merely places the sens-

43

ings, AirData at 5 Hz and INSDATA at 32 Hz, on the MAB. It is pulled off at the

appropriate frequency by the appropriate subgraph of node NORMALOPERATIONS.

The graph port on the left starts the execution and that on the right terminates it.

upon shutdown. The graph for node PILOTINPUT is structured like Figure A-40 with

the two columns representing the transmission of the MMKey (mission mode) and

the IMFKey (multifunction display). In addition, since each input solicits a response

from the cockpit interface LPU, a graph outport is included below each MABx node.

Figure A-41 is an expansion of node NORMALOPERATIONS. The left half contains

the graph inports and nodes to distribute their tokens. The right half contains two

columns of internal nodes and the graph outports. Upon completion of startup. a

token is received on node start3 and distributed by node split to the five internal

nodes in the left column. These tokens start simulated execution of the LPUs. Node

CPINTERFACE emits a token to node PILOTINPUT on the parent graph when it has

established connections and then receives inputs from PILOTINPUT through graph

ports MMKey and IMFKey. Similarly, node SENSORMGMTO turns on node SENSORS.

When the simulated failure occurs a token is received via node failure, and node

blockCPU1l emits tokens to stop the proccssing in nodes NAVIGATIONO, SENSORMGMTO,

and DGSINTERIFACEO. After the failure is detected and the LPUs have been loaded

into their new CPUs, nodes NAVIGATION1, SENSORMGMT1, and DGSINTERFACEI are

started (graph ports StartO. 1, and 2). A MMKey input (mode change) into node

CPINTERFACE causes an output, on graph port shutdown that triggers the shutdown

44

process. As LPUs are stopped in the shutdown process, tokens are received on nodes

shutdownO through shutdown3 stopping execution. The execution of node CPINTERFACE

is stopped by stopping node PILOTINPUT on the parent graph.

Figure A-42 is the subgraph of node CPINTERFACE. Upon receipt of the "start" token

on node inportO, message connections are established (left column). Node outportl

initiates node PILOTINPUT on the top-level graph. The LPU then responds to inputs

from the pilot (nodes rcvmmp and rcvimfk) and waypoint changes (node inporti) from

node GUIDANCE on the parent graph. Changes in the variable "FLYTO" received or

derived from PILOTINPUT are output to node GUIDANCE on the parent graph (node

outportO). After an appropriate number of MMP inputs, a token is emitted on node

outport2 to initiate system shutdown. It can be seen from this figure, and those that

follow, that the focus of this model is on data transfer which is modeled in much

greater detail than the CPU processing.

Figure A-43 is the subgraph of node SENSORMGMTO. As with CPINTERFACE, connec-

tions are made first with establishment of appropriate connections enabling processing

of messages. Outputs are provided to the Guidance LPU in CPU21 over the MAB

and to the Display Generation System (DGS) Interface and the Navigation LPUs

internally. Figure A-44 is the subgraph of node SENSORMGMT1. After the failure,

this LPU is loaded into CPUl2, Navigation has been reloaded into CPU22, and DGS

interface into CPU21. As can be seen, the changes from Figure A-43 are primarily the

path for the outports. The only other difference is the deletion of the graph outport

45

that turned the sensors on. Figures A-45 through A-47 are one version each of tile

other three LPUs.

3.3.4. Failure and Reconfiguration

Figure A-48 is the subgraph of node DETECT on the top-level graph (Figure A-6).

This graph is initiated by expiration of the firing delay of node FAILURE (a leaf node)

on the top-level graph. Node DETECTMISNGPLSE delays for 10 pulse periods which is

the specified number (ref 11) for the cluster supervisor to take action. The remainder

of the graph represents the transmission of the configuration report (failure) message

from the cluster 1 supervisor to the system supervisor.

Figure A-49 is the subgraph of node RECONFIGURE on the top-level graph. The upper

portion consists of nodes associated with preparation and transmission of the configu-

ration requests messages necessary to load and start the failed LPUs in new modules.

The last two nodes, other than graph ports, in each column are internal nodes that

load and start the assigned LPU. Below each ...LOADLPU node is a subgraph with

three internal nodes representing the CPU, BTBIM, and SMM functioning in the

loading process, (Figure A-50). Below each node in Figure A-50 is a subgraph of the

form we have seen in Figures A-23, A-25, and A-27. In fact, where the module and

the size of the LPU is the same, the same graph is used. The nodes ... STARTLPPU on

Figure A-49 have a subgraph that starts the LPU sending a token into the appro-

priate subgraph of NORMALOPS. They then transmit the configuration report to

46

the system supervisor. Figure A-51 is the subgraph of node CPU12STARTLPU. This

configuration report must pass over the MAB to cluster 2. The other two subgraphs

have only the portion necessary to transmit the report internally.

3.3.5. Shutdown

After the reconfigured system has run for the desired length of time, Shutdown is

executed by passing a token from node XMITMISSMODE in Figure A-42 through the

graph outport into node SHUTDOWN on Figure A-6. Figure A-52 is the graph of node

SHUTDOWN. The timing can be controlled by adjusting the rate at which MMKey

tokens are passed to the LPU CPINTERFACE (currently set at 1Hz) and the firing

threshold attribute (currently set at 5) on node CPU22RcvShutDn in Figure A-52.

In order to simulate an orderly shutdown of the system, the model forces a sequence on

the shutdown process. The module containing the system supervisor is the last mod-

ule to shut down. The last module prior to the system supervisor is the MABIM mod-

ule in the cluster containing the system supervisor. For other clusters, the MABIM

module is the last and the cluster siipervisor the next to last. If we had more than

two clusters we would have assured that the hot-backup was the last of the other

cluster supervisors. In Figure A-52 there are two principal internal nodes, one for the

shutdown of each cluster.

Figure A-53 is the subgraph of node Cluster2ShutDn. Node CPU22Broadcast has a hier-

archy below it that passes the shutdown message token to each of the other modules

47

in the cluster. Node MAB2PIBU has an inport that will prevent its execution un-

til the shutdown report is received from cluster 1. The system supervisor, CPU22,

shuts down after receiving the MAB shutdown report. Each column shows a module

first stopping and then unloading any LPUs. This is followed by transmission of a

shutdown report and finally stopping the module. As LPUs are stopped tokens are

output to stop their execution. Nodes outputo through 4 pass the tokens that stop

the appropriate sub hierarchy in SYSTEMESSAGES. As the model is currently con-

figured, the shutdown message to cluster 1 is transmitted after the three modules

other than MAB and system supervisor in cluster 2 have shut down. If we want

it to be done simultaneously, node XmitcllShutDn (and the hierarchy below it that

transmits the message on the MAB) would be moved up to the parent graph. The

outports and arcs connecting the three shutdown report nodes with node join would

be deleted as would nodes join and ToClusterl. On the parent graph (Figure A-52) the

new node, XrnitCllShutDn, would be placed on the graph and its inport connected to

an outport that would be added to node CPU22ComputeCnfg. The outport connecting

node Cluster2ShutDn to node ClusterlShutDn would be deleted and a new arc connecting

the outport of node XmtCilShutDn to that inport (of node ClusterlShutDn) would be

added. The subgraph hierarchy would automatically follow with node XmitCllShutDn

by including the appropriate subgraph filename.

Figure A-54 is the subgraph of node CPU21StopLPU. It contains a node for each LPU.

Figure A-55 is the subgraph of one of these nodes. First, the LPU is stopped. This is

48

followed by a series of disconnects from the LPUs messages and finally an updating

of the LPU loaded and running arrays in ASO.

Figure A-56 is the subgraph of node ClusterlShutDn on the shutdown graph (Figure

A-52). The shutdown message comes into node RCVCIIShutdown (Figure A-57) where

it is transmitted to all modules on the PI-bus. This node also collects the tokens

signifying that the M1553B1M, BTBIM, and CPU have completed shutdown to trigger

shutdown of the MABIM. The remaining nodes function the same as those in cluster

2 shutdown. When all modules in cluster 1 have completed shutdown, node join passes

a token back to node ClusterlShutDn on the shutdown graph (Figure A-52) to trigger

execution of shutdown of the MABIM in that cluster followed by the CPU22.

3.4. Resource Utilization

The GIPSIM simulation tool simulates resource utilization through the node attribute

firing.dday assigned to the leaf nodes of the model. When a node is primed (all of

its input conditions (firing thresholds) are met and its resource module available and

assigned), the assigned resource module becomes unavailable for the duration of the

assigned firing delay (and that period is added to the "module utilization" collected

for output). Upon expiration of the firing delay, appropriate tokens are placed in the

outport arc queues and the resource module is released. Thus, all firing delays must

be calculated in common units. In this case the unit selected was microseconds.

49

The objective of this modeling effort is to analyze data transfer during configuration

and reconfiguration. Those processes associated with data transfer are represented

with a high degree of resolution and their delays calculated using all available data af-

ter an exhaustive search. Other processes, such as LPU functioning and configuration

algorithms, were resolved only to the degree necessary to provide the appropriate pro-

file of data transfer resource demands. This aggregation serves to reduce the running

time required for analyses.

This section will describe the firing delays assigned in the model and how they were

calculated.

3.4.1. Data Transmission Delays

Data transmission delays depend upon the characteristics of the transmission system

and the amount of data transmitted. The following paragraphs address message sizes

and PI-bus and HSDB transmission.

3.4.1.1. Message Sizes

Data transmissions were addressed in four categories.

Those messages involved in system management (transmitted and received by the

AARTS Software) are described in the documentation of the system executive [11].

Table 3.4 contains a list of these messages, their origin and destination, and the

50

message length in words.

Table 3.4. System Management Messages

SYSTEM MESSAGES
(Reference 11)

Page Number
Sender Receiver Name Size Fig. Discussion Bus Comment

DE .ModuleMgr *E -us..M$ Mod_.Conflg..Rpt 4+5/pu 7,8 226 TyDE Module-Mgr SE.Clue-Mjt Mod.Statu&...pt 3 9 2,26 Pi

PV_1 SE.SS _Mn._ModeC..gRe, 1 11 104 7 -1 SS incl HB
SuM(fil.e) SE.MonCtri Marn..ont rlFile 2000 14 13 HSD BTB
SMM S SE.LPU..Attr LPU..Attributes.File 42 15 13 HSDB BTB
SE.Kenl(ARB) SEKernel Cluster.Pulse 2 - 20,5,6 PI Cluster Heartbeat
SE.Kernel SE.Clus.Mgt Clu ter.Ping 2 60 20,25,26 P1
SE.Kernel SE.Clus..M jt Module.Pulse 2 20,25.26 Pi I
SE.Clus..Mgt SE.SS Cluster..Conflg-Rpt

20
+S/lpu 7,8 37,42 HDB SS incl HB

SE.Clus.Mgt SE.Kernel Cluster..Ping.Ack 2 61 37,20 P1
SE.ClusMgt SE.Kernel&SS Cluster-Pulse 2 37,20,42 PI&HSDB SS incl HB
SE.Clus..Mgt DE.Module-Mgr Cluster.SatusReq 2 6 37,1,42 PI
SE.Clus..Mgt SESS Cluster.Status_Rpt 9 57 37 HSDB SS incl HB
SE.Clus.Mgt SE.SS System.Ping 2 60 37,42 HSDB SS incl HB
SE.ClusMgt DE.Module..Mgr Cluster.Config.Req 3+1/ilpu 4,5 38,1 Pi
SE.Clus-Mgt(HB) otherClus.Mgt HB..Heartbe&t 2 56 38,26 HSDB
SE.Clus-Mgt(SS) SE.HB SS..Heartbeat 2 56 38 HSDB
SE.Clus-Mgt(SS) otherC1sg 2 60 36 HSDB
SESS PVMnIdeCbg.resp -112 48,10 HSDB
SE.SS SE.Clus.Mgt System.Acknowledge 2 61 48,27 HSDB
SE.SS SE.ClusMgt SystemConfig..Req 3+1/lpu 4,5 48,26 PI&HSDB
SE.SS SE.Clus..Mgt System..StatuR..eq 1 59 49,30 PI&HSDB Sys..Query
SE.SS SE.HB System.Status..Rpt 3+8/cl 58 49 HSD B

Messages transmitted to and from the LPUs in the simulation were described in data

provided by the TRW project manager [24]. Table 3.5 describes these messages.

Messages associated with obtaining files services are documented in the IRS [8] [9]

and from data provided by the TRW project manager [23] . Those employed in the

model are listed in Table 3.6.

File sizes were obtained from the TRW project in reference 24 and through telephone

conversations. The file sizes used in the model are shown in Table 3.7.

51

Table 3.5. Messages Transmitted to and from LPUs

LPU MESSAGES
(Reference 24)

Sender Receiver Name Size (words) Bus
SENSORS SENSOR MGT Air Data Sensor 4 MAB
SENSORS SENSOR MGT INS Sensor 29 MAB
SENSOR MGT DGS Interface Air Data 20 MAB
SENSOR MGT GUIDANCE Air Data 20 MAB
SENSOR MGT DGS Interface INS Data 46 MAB
SENSOR MGT GUIDANCE INS Data 46 MAB
SENSOR MGT NAVIGATION INS Data 46 MAB
PILOT PVI IMFK Key 2 MAB
PILOT PVI MMP Key 2 MAB
PVI PILOT MMP Lamp 1 MAB
PVI PILOT Pilot Mission Mode 1 MAB
PVI GUIDANCE Fly To 1 MAB
PVI PILOT IMFK Command 32 MAB
NAVIGATION GUIDANCE Sys Body Nav State 40 MAB
NAVIGATION DGS Interface Sys Body Nav State 40 MAB
NAVIGATION GUIDANCE Nay State 17 MAB
NAVIGATION DGS Interface Nay State 17 MAB
GUIDANCE DGS Interface Steering Control 18 MAB
GUIDANCE STORE Steering Control 18 BTB
GUIDANCE DGS Interface Steer 18 MAB
GUIDANCE PVI Guidance Waypoint 1 MAB
DGS Interface M1553B Master Mode Buffer-l 32 M1553B
DGS Interface M1553B Master Mode Buffer_2 32 M1553B
DGS Interface M1553B Miscellaneous Msg 4 M1553B

52

Table 3.6. Files Services Message Lengths

FILES SERVICES MESSAGES
(Reference 8,9, & 23)

Message
Service Size (words)

Open File 3
Response 2
Read File 6
Read Response 2

Table 3.7. Files Services File Sizes

FILE SIZES
(Reference 24 & Verbal)

ASO 80K words 20 blocks
ASI 80K words 20 blocks
Cockpit Interface 21K words 5 blocks plus a short block
DGS Interface 17K words 4 blocks plus a short block
Guidance 17K words 4 blocks plus a short block
Sensor Management 13K words 3 blocks plus a short block
Navigation 13K words 3 blocks plus a short block
Bootstrap Loader 4K words
Mission Control File 2K words
LPU Attributes File 42K words

53

3.4.1.2. PI-bus Transmission Delays

The following conditions and assumptions were used for determining PI-bus data

transmission rates for the ADAS model.

" PI-bus is a Type 16 ED Bus [1] (page B-16)

* All modules will vie for PI-bus before every transmission

* VIE sequence takes 8 bus cycles [1] (page B-30)

" The HZ and DZ cycles have been included, implying non-transfer wait cycle

before the Header and Data Acknowledge cycles [1] (Table 5-17, page B-71)

" Data will transfer from master to slave without interruption provided the amount

of data transferred is less than 65,536 words

" There will be no passing of Tenure during message passing or ASO loading for all

the modules, and that the absolute tenure limit of (224+ 8) will not be necessary

" No Parameter Write type messages were modeled

" All data transmission on the PI-bus shall use the the Block Message-SH se-

quence [1J (page B-69)

" The BTBIM has the highest priority (4095) of all modules connected to the

PI-bus [11 (page B-110)

54

* The PI-bus will have a transfer rate of 10 million words per second during the

DATA state, and assuming 16 bit words only, and one cycle only to transfer

each word, each cycle time is 100 ns, or 0.1 microseconds

9 The Block Message-SH Sequence contains the status words listed in Table 3.8

for a total overhead of 8 words [1] (page B-35)

Table 3.8. PI-bus Status Words

Message Size (words)

HEADER (HO, HWA, HWCO, HWC1, HZ) 5
HEADER ACKNOWLEDGE 1
DATA ACKNOWLEDGE (DZ, DAO) 2

By including the necessary 8 VIE cycles and assuming 1 cycle/word, the total over-

head is 16 bus cycles per transmission. This coupled with the 0.1 microsecond per

word transmission rate results in the following formula:

Firing Delay = (#words + overhead) x rate microseconds

= (#words + 16) x 0.1 microseconds

Firing delays for common message sizes are shown in Table 3.9 These are the delays

placed on the leaf node names PIBIU & PIBUS in the transmission graphs. It was

determined during the modeling that the transfer rate between the PI-bus interface

unit and the memory was slower than the bus traasfer rate. This could lead to loss

55

of portions of messages. The modeling team was instructed to assume a two-channel

transfer (2 words in parallel) between PIBIU and memory and a buffer in the PIBIU

that would receive words prior to transmission and collect them on the receiving end.

The initial read was modeled along with CCB execution in nodes CCBEXECUTION.

The final writes were modeled along with reaction to message labels in nodes RCVxx

in the model.

3.4.1.3. High Speed Data Bus (HSDB) Transmission Delays

The following conditions and assumptions were used for the calculation of the High-

Speed Data Bus data transmission times.

* The Avionics Bus Interface (ABI) component of the HSDBIM is in the ACTIVE

state following completion of its SUROM

* the HSDB-ABIs of both clusters remain in the network. Ring admittance is not

modeled

* Transmission Monitor Timer (TMT), Transmission Streaming Timer (TST),

Initialization Sequence Try Count (ISTC), Valid Message Transmitted Count,

Message Echo Error Count and all "counts" listed on page 114, [21 arc not

modeled

* The ABI is capable of transmitting/receiving on the HSDB while simultaneously

transmitting/receiving to the 1750 Module

56

Table 3.9. PI-bus Firing Delay

Size PI-bus
(words) (microseconds)

1 1.70
2 1.80
3 1.90
4 2.00
6 2.20
8 2.40
9 2.50

17 3.30
18 3.40
20 3.60
22 3.80
23 3.90
28 4.40
29 4.50
30 4.60
32 4.80
40 5.60
45 6.10
46 6.20
55 7.10
60 7.60

288 30.40
520 53.60
616 63.20

4096 411.20

57

* The ABI can fully enqueue and validate any message received befor,' transferring

it to the 1750 module

* All transfer of data (HCCB's, message data) between the ABI and the 1750

module is via DMA

* All 3 Transmit Queues on the ABI can store up to 3839 16-bit words each (one

buffer for each priority level) [2] (page 103). Only priority 1 is simulated

* The ABI Receive Queue (data from HSDB, enroute to 1750 module) can store

up to 8192 16-bit words [2] (page 104)

* Block size is 256 words on the MAB and 4K words on the BTB

" The Bus transfer rate is 50 million bits per second, or 0.02 microseconds per

bit [2] (page 59)

" The token frame and preamble consists of 40 bits [2](page 78). See Table 3.10.

* Message frame overhead is 88 bits [2](page 78). See Table 3.11.

" An intertransmission gap of 280 nanoseconds, [2] (page 78), was used

" When the i3us is idle, the token is equally likely to be at any point on the ring.

The assumption that the token is equally likely to be anywhere on the ring at any

time implies that on the average when a station is ready to transmit, it will wait for

one token passage (the average of the token being 0, 1, or 2 stations away). For any

58

Table 3.10. HSDB Token Frame

Parameter #Bits

Preamble 16
Start Delimiter (SD) 4
Bit 4 1
Destination Address (DA) 7
Frame Check Sequence (FCS) 8
End Delimiter (ED) 4

Table 3.11. HSDB Message Frame Overhead

Parameter #Bits

Preamble 16
Start Delimiter (SD) 4
Frame Control (FC) 8
Source Address (SA) 8
Destination Address (DA) 16
Word Count (WC) 16
Frame Check Sequence (FCS) 16
End Delimiter (ED) 4

59

number of stations, n, on the ring, this number would be (n-l)/2. By not implicitly

modeling token passage, the output Bus utilization represents productive utilization.

With token passing, including it is always 100% busy. Using this assumption, the

delay assigned to nodes named WAIT4TOKEN was calculated as the time to pass a

token frame (and preamble) plus the intertransmission gap or

40 bits x 0.02 microsecond/bit + 0.28 microread = 1.08 microsecond

For the BIU, MAB, and BTB nodes with a message overhead of 88 bits, the calculation

is

(N x 16 + 88) x 0.02 microsecond

where N is the number of words in the message. Table 3.12 provides the HSDB firing

delays for various message lengths.

3.4.2. CPU and SMM Delays

The firing delays assigned to nodes mapped, onto the CPU modules and onto the

System Mass Memory (SMM) were estimated in three different groups:

* SUROM processing and checksuns

" Message and files services

60

Table 3.12. HSDB TIMING

Size HSDB
(words) (microseconds)

1 2.08
2 2.40
3 2.72
4 3.04
6 3.68
8 4.32
9 4.64

17 7.20
18 7.52
20 8.16
22 8.80
23 9.12
28 10.72
29 10.93
30 11.36
32 12.00
40 14.56
45 16.16
46 16.48
55 19.36
60 20.96

288 93.92
520 168.16
616 198.88

1040 334.56
4096 1312.48

61

e Other

Most key parameters used for calculating these firing delays were provided by the

TRW project manager. Some of them changed radically during the course of the

modeling effort. Those that were originated with the modeling team were submitted

to and either confirmed or corrected by the TRW project manager.

3.4.2.1. SUROM Processing and Checksum Delays

The key parameters for these calculations were:

Memory access time 187.5 nanoseconds
SUROM size 10,000 words
Processor speed 2.0 mips
Checksum algorithm 10 instructions cycles/word
Memory test 4 accesses/word
Memory size M1553B BIM Module 128K words
Memory size - other Modules 256K words
ISA test and discrete checks equivalent to 256K memory test

Using these estimates one obtains the delays shown in Table 3.13.

The checksum delays from Table 3.13 are used in the appropriate checksum nodes

throughout the model. Since the entire SUROM process up to transmission of the

ready message is performed by the CPU without contention from other processes,

this process is modeled in a single leaf node with a delay of 339,875 microseconds for

the M1553B nodes and 435,875 microseconds for all others.

62

Table 3.13. Time for SUROM and Checksum Events

FIRING DELAY FOR SUROM AND CHECKSUMS

Read RAM to ROM Assume 187.5 nanosecond 1 ,875 microsec
transfer and 10,000 word SUROM.

Checksum Assume 2.0 mips Processor & 50,000 microsec
10 instruction cycles/word.

Memory test Assume 4 accesses/word & 192,000 microsec
256k memory

Memory test Assume 4 accesses/word & 96,000 microsec
128k memory

Remainder (ISA test, Assume equivalent to 192,000 microsec
other tests, Discretes) memory test

Checksums ASO 80,000 words 400,000 microsec
ASI 80,000 words 400,000 microsec
Interface 17,000 words 85,000 microsec
Cockpit Interface 21,000 words 105,000 microsec
Sensor Management 13,000 words 65,000 microsec
Guidance 17,000 words 85,000 microsec
Navigation 13,000 words 65,000 microsec
LPU Attributes File 42 words 210 microsec

63

3.4.2.2. Message and File Services Delays

RTL was furnished timing data from the fifth AARTS Quarterly Review (QR5) [221.

These data showed the times in microseconds for execution of certain message serI-

vices and the goals that had been specified for some of them. In accordance with

instructions from the project manager, we used the lessor of the measured time or

the midpoint between the measured time and the goal, whichever was less. These

times are displayed in Table 3.14.

The numbers provided by QR5 were for calls from address states outside of address

state 0. They thus include in and out processing through an interface unit and a BEX

handler. Since some of the system messages and their connections originate within

address state 0, an estimate was needed for the amount of time to be ascribed to their

processing. In addition, estimates were needed for the files services (open, close, read,

write). A matrix of procedures, functions, etc., called by the measured and unknown

services was constructed. Table 3.15 contains this matrix at the top. Each row of

the matrix describes a service. Each column of the matrix describes a function that

induces a delay. An x is placed in the matrix if that function is required to perform the

service. The total delay for a service should equal the sum of the delays for the marked

functions. The left column of the key defines the column headings for the matrix.

The known (estimated) times were placed in the time column and the unknown ones

(marked by asterisks) were calculated using the algorithms and assumptions shown

in the lower right portion of the table. The resulting times for the services provided

64

Table 3.14. Time for Message I/O Services

FIRST PASS FIRING DELAYS (Used min(QR5,(QR5+Goal)/2)

Operation Goal QRS Use

Connect Receive 210 357 283
Redirect 75 215 145

Flush 75 190 132
Disconnect Receive 210 223 217

Connect Transmit 210 382 296
Transmit Novait 135 474 305

Transmit 135 562 348
Disconnect Transmit 210 223 217

Event Create 193 193
Event Set 225 103 103

Event Clear 225 103 103
Event Toggle 225 120 120

Event Polarity-Of 75 104 90
Event Is-Created 101 101

Event Delete 185 185
Semaphore Create 191 191

Semaphore Acquire 105 104 104
Semaphore Release 195 116 116

Semaphore Delete 177 177
Critical Section Enter 135 96 96

Critical Section Leave 135 96 96
Calendar Seconds (Clock) 109 109

Simple Accept 321 321

65

within address state 0 were placed in the column headed "(ASO)." The remark at

the end of the connect and disconnect rows emphasizes that a transmission of tile

channel array to the HSDBIM must be added to each HSDB connect and disconnect.

These are the delays used in the model.

3.4.2.3. Other Delays

Delays associated with AARTS algorithms such as processing the Mission Database,

computing a configuration, stopping a CPU, etc., were estimated jointly by TRW

and RTI personnel. The same was done for the LPU algorithms, the Bus Interface

Module Software, and for System Mass Memory processing. These estimates are

displayed in Table 3.16. The firing delays have all been entered into the model and

the script files for setting firing delays with a decimal point and two zeros. This

will facilitate locating them for change (in the script files) should better estimates or

actual measurements become available.

66

Table 3.15. Time for Message and Files Services

to tocc a

I In

0Nt N +)Cl

$4 -1 $ $4 -W4' C4N r- W .-

u0 '0 M0 '0q +1 M +4 +4

'0 en N0 '0

4j ++ +o 'C C U) 4)1 1 01 N 10 0) 0u0 -

4 'C SO x U) u4 Ox 01 x q No t C o

+ r$+

. + 0 cm-4 0

C 14) '.4 0 w '

Enz 0; + 0 5U)0 Ij 2 W + CI4. 'D C

01 xC E- E$> 0

04. r. %, -4 V

4).4 'a4 C .NI 'C+

0 >~ 4 40C ~
4).4) .8 4.) r) N 'Cr a0 1 2~4 0 .504) 0 0 0 0

4) $4'.400,04-4)0o410 4)

'C = . 0 a) r 4E 0C
'1~~ ~~ *44 C4 0 44~ 4

('44
'C 4) 14 1414 1

V) 0
0. 0 4) .

0 0 r

'0 V1 0' 1

U. . r 4

CC '0 4) 'a
0 aa0 0 0uC

0 C 4 0Q=a
'P w4 r- aC' u0 0$04

$4 0 0 . - .0
4j 0 04. 4.5,-t 0 010

Co 0 woo -u u

'j0 C 4 C

C-4 -44 0.N0

0 04 1-4 14 C..
w4 4) 444 .14-M

a'4.V0 CC -V-' -114
40 00 ."$4 4

C0 4)0,, 4.54.4D 040
00 0 0. w k. a444 --.-- 4) I

AO U.O$ 04. E4 E) WC4W)oa

67) 0) 4)U.0 $$

4)~~~~. ... C. .C ~ 4 .U0)) 0 .

Table 3.16. Assumed Firing Delays

TRANSMIT TWO WORD (XMIT) 100.00
STARTUP.ARBCPU1 1 (or2l).CALLCLUSTERARB 100.00
STARTUP.ARBCPU12 (or22).ARBCLUSTER.CALLCLUSTERARB 50.00
All MONITORxxHB 50.00
xSMMx.XMITSTATUS 348.00
SMM send block 1000.00
HSDBIM process msg from PI to HSD Bus 200.00
HSDBIM process msg from HSDB 20.00
STARTUP.ARBCPU22.ASSUMESYSSUP.STARTSYSMGMT 400.00
STARTUP.ARBCPU22.ASSUMESYSSUP.STOPHOTHB 50.00
CPU Process Mission Database 200.00
Compute Configuration/ Reconfiguration 600.00
MAB UPDATE ARRAY 200.00
All RCV system msg in CPU 50.00
DGS CALCULATE 300.00
CHANGE WAYPOINT 200.00
COMPUTE STEER 800.00
COMPUTE AIRDATA 600.00
COMPUTE INSDATA 1800.00
COMPUTE MMP 150.00
COMPUTE IMFK 400.00
COMPUTE WAYPOINT 500.00
COMPUTE shutdown, STOP CPU, STOP LPU 100.00
UNLOAD LPU or ASI 5000.00
UPDATE Structures 50.00

68

3.5. Flow Control

A GIPSIM simulation is controlled by the passage of tokens between nodes. This

control is effected by the assignment of values to the attributes token-consume-rate,

token.producerate, firing-threshold, and initiaLtoken-count for node in and outports

and to the attribute queue-size for arcs. In most cases, these attributes are set to the

default value 0 for initiaLtokencount and 1 for the others. The following paragraphs

will describe how these attributes are manipulated to control the execution of the

model.

Figure A-8 is the graph of node SUROMBTB2 on the startup graph. Values assigned

for the node in and outports in this graph are shown in Table 3.17.

Table 3.17. Port Attributes - Graph of Node SUROMBTB2

Node Port Consume Threshold Initial Produce
WAIT4TOKEN 0 1 1 1 inport
RUNCHECKSUM 0 20 20 0 inport
RUNCHECKSUM 0 outport n/a outport 0
join2 0 2 2 0 inport
splitl 0 25 25 24 inport
split2 0 1 1 20 in port
split2 1 1 2 inport
split2 0 outport outport n/a 0
SETUPBTBDOWNLOAD 0 outport outport n/a 2
all others all 1 1 0 in port
all others all outport outport n/a 1

The graph commences execution when a token is received at expiration of the power-

up delay (through node inporto) on the inport of node STARTSUROM. After node START-

69

SUROM'S firing delay has passed, a token is passed to node SETUPBTBDOWNLOAD

(inport 0). SETUPBTBDOWNLOAD is an "OR" node and so will execute upon receipt

of this token. Two tokens produced by outport 0 of node SETUPBTBDOWNLOAD.

These provide for two primes of inportl on node WAIT4TOKEN (consume and thresh-

old both 1). The single initial token on inportO of node WAIT4TOKEN allows the node

to execute upon receipt of the tokens from node SETUPBTBDOWNLOAD. This use of

an initial token is the standard way to initialize cycles. After the first transmission of

the 2-word message, node delay waits for the assigned time and then outputs a token

to inport 0 of node WAIT4TOKEN providing for a second execution of the message cy-

cle. When node delay executes the second time, both tokens have been consumed on

inportl of node WAIT4TOKEN and the cycle of 2-word messages terminates. Node join2

connects to graph outport 1 that represents the arc from node SUROMBTB1 to node

SMMASOTOBTB on the parent graph. Node join2 is an OR node; that is it will execute

whenever the token threshold is met on any, rather than all, of its inport queues.

The firing-threshold and token-consumerate on inportO of node join2 has been set for

execution after two message transmissions. Node spiti activates the receipt of the 4-

word message. It must execute upon receipt of the first token from the SMM and not

on any of the following. This is achieved by setting the token.consume-rate and fir-

ing-threshold to a number (in this case 25) greater than the total number of expected

incoming tokens (in this case 24) and setting the initiaLtoken-count to one less. The

queue size on the arc must be set 25 or more or a full queue will block the predecessor

node. Node split2 activates the receipt of a 4K block of data from the SMM during

70

download of the ASO. rhe feedback arc from outpotto (zero token.produce-rate) to

inportO (a token-consume-rate and firing-threshold of 1 and initiaLtoken-count of 20)

ensures that this node will execute no more than 20 times. Since the sequence of 4K

blocks follows the receipt of the 4-word message, the firing-threshold on inportl has

been set to 2 with a token-consume-rate of 1 and no initial-token-count. This causes

node split2 to commence execution upon receipt of the second token from the mem-

ory and to continue to execute on each succeeding token until the 20 tok,. r initially

on inportO are consumed. Again the queue sizes must accommodate the maximum

number of tokens. Node RUNCHECKSUM is set to execute after receipt of twenty 4K

blocks of data from the SMM. outportl of node RUNCHECKSUM would, if it produced

a token, restart the entire process. Since the guidelines for the simulation was to

assume no failure of BIT or checksum, the token-produce-rate has been set to 0.

Node READLPULOC is an internal node. Therefore, the execution takes place in its sub-

graph (Figure A-9). The token-consume-rate, firing-thrcshold, and tokenprodi -e.rate

attribute values are shown in Table 3.18.

Table 3.18. Port Attributes - Graph of Node READLPULOC

Node Port Consume Threshold Initial Produce
RCVRESPONSE 0 3 3 2 inport
RCVDATA 0 3 3 1 inport
RCVSTATUS 0 3 3 0 inport
split 0 1 22 0 in port
all others all 1 1 0 inpor!
all others all outport n/a ontpo, i

71

In this case, we want nothing to happen until after the 4-word message and ASO have

been received (21 messages). Thus, we put a threshold of 22 on node split which

receives the SMM inputs. The consume of 1 assures that it will execute on each

received message after the 21st. Three messages will be received from the SMM:

the open file response, the data, and the read status. By putting a threshold and

consume of 3 on the three corresponding nodes and initial token counts of 2, 1, and

0, we achieve the proper sequence of execution.

Figure A-10 is the graph of node SMMASOTOBTB on the startup graph. The to-

ken.consume-rate, firing-threshold, and token-produce.rate attribute values are shown

in Table 3.19.

Table 3.19. Port Attributes - Graph of Node SMMASOTOBTB

Node Port Consume Threshold Initial Produce

WAIT4TOKEN0 0 3 3 2 inport
WAIT4TOKENO 1 20 20 0 inport
WAIT4TOKEN1 0 1 1 1 in port

WAIT4TOKEN2 0 0 0 0 inport
WAIT4TOKEN2 1 3 3 2 inport
WAIT4 TOKEN3 0 1 1 1 inport

XMITDATAO 0 outport outport n/a 20
XMITDATA1 0 outport outport n/a 20
split1 2 outport outport n/a 0
all others all 1 1 0 'nport

all others all outport outport n/a 1

In this graph we want the nodes WAIT4TOKENo and WAIT4TOKEN2 to execute on

receipt of the first message from the appropriate BTBIM with the 4-word message

followed by the 20 4K blocks of ASO. The next two messages are the open and

72

read for the LPU attributes file. They will trigger events in the subgraph of node

RDLPULOCx. Thus, we place a threshold and consume of three with an initial count

of two on inports 0 and 1 of nodes WAIT4TOKENo and WAIT4TOKEN2, respectively.

The consume and threshold of 0 on inport 0 of node WAIT4TOKEN2 allows the node

to execute on inputs to inport 1 only. The arc from node split3 to node WAIT4TOKrN2

provides a means to allow simultaneous loading of the BTBIMs by putting a produce,

consume, and threshold of 1 on the parts associated with this arc and the arc from

node split3 to node WAIT4TOKENO and an initial token in the inport of the node we

want to "fire." First this graph can be made to transmit the 4K blocks alternately

to the BTBIMs. As currently configured, the consume and threshold of 20 on inport

1 of node WAIT4TOKENO prevents it from executing until the BTB2 load is complete.

Nodes RDLPULOCx are internal nodes with graphs as shown in Figure A-11. The to-

ken.consume-rate, firing-threshold, and token-produce-rate attribute values are shown

in Table 3.20.

Table 3.20. Port Attributes - Graph of Node RDLPULOCx

Node Port Consume Threshold Initial Produce
RCVOPENLPULOC 0 2 2 1 in port
RCVRDLPULOC 0 2 2 0 inport
split 0 1 2 0 inport
all other all 1 1 0 inport
all other all outport outport n/a 1

For this graph we have two trains of events, each initiated by an incoming token.

Execution must start with the second token received from the BTBIM (see discussion

73

of Figures A-8 and A-10). The threshold of 2 and consume of 1 on node split with

no initial token assures that it will execute on receipt of the second incoming token

and any subsequent ones. The threshold and consume of 2 with 1 initial token on

node RCVOPENLPULOC means it will execute on receipt of the first token from node

split (the open request) and not on the second. The threshold and consume of 2 with

no initial token on node RCVRDLPULOC means it will execute on the second token

received from node split.

Figure A-15 is the graph of the BTBIM receiving messages from a module and passing

them to the recipient during the loading of the bootstrap loader and ASO software.

Table 3.21 shows the port attributes assigned to nodes in this graph.

Table 3.21. Port Attributes - Graph of Node BTBTOSMMAS9

Node Port Consume Threshold Initial Produce
RCV2WORD 0 26 26 25 inport
RCVREADREQ 0 1 2 0 inport
RCVRESPONSE 0 50 50 49 inport
All Other - 1 1 0 inport
All Other - outport outport n/a 1

We want node RCV2WORD to execute on the first token received from the module

and then to ignore any' others. We thus set a consume and threshold greater than

the expected number of incoming tokens (26) and assigned one less to the initial

token attribute. Node RCVREADREQ must pass all subsequent tokens to the SMM.

Therefore, we put on it a consume of 1 and a threshold of 2 with no initial token.

Finally, when the memory responds to the open request for the bootstrap loader (this

74

request is initiated in this graph) this graph transmits a read request to the SMM.

We want this chain to execute on the response to the open file response and not to

any subsequent SMM responses. We achieve this with a threshold and consume of 50

and an initial token count of 49.

Figure A-16 is the graph of the BTBIM passing messages from the memory (and in one

case from the graph discussed in the preceding paragraph) to a module. Table 3.22

shows the port attributes assigned to nodes in this graph.

Table 3.22. Port Attributes - Graph of Node BTBTOCPUASO

Node Port Consume Threshold Initial Produce
Split 0 1 2 0 inport
RCVATTRIBRESP 0 2 44 0 inport
RCVFILERESP 0 2 3 0 inport
RCVFILERESP 1 1 1 21 inport
RCVBOOTRESP 0 50 50 48 inport
RCVBOOT 0 50 50 49 inport
RCVAS0 0 2 4 0 inport
RCVASO 1 1 1 20 inport
RCVATTRIB 0 45 45 0 inport
RCVFILERESP 1 outport outport n/a 0
RCVAS0 1 outport outport n/a 0
All Other - 1 1 0 inport
All Other - outport outport n/a 1

The first token passed from the SMM hierarchy into this (BTBIM) hierarchy is the

response to the bootstrap loader open request. This triggers a read request in the

graph discussed in the preceding paragraph. The token consume of 1 and threshold

of 2 on node split in this graph assures that the first token from SMM will be ignored

in this graph while each succeeding token will cause an output. Commencing with

75

the second incoming token, node split places a single token on each of its outport

queues each time a token is received from memory. The first of these tokens represents

transmission of the bootstrap loader. This token causes node RCVBoot to execute. The

consume of threshold of 50 with an initial count of 49 causes this node to execute on

the first token received (and, were there to be that many, on the 51st). This is followed

by a read status message from the SMM to the BTBIM. Node RCVBOOTRESP, with a

consume and threshold of 50 and an initial token count of 48, executes on the second

token from node split. After the bootstrap loader has been received by the module, the

module transmits an open file request for the ASO software. This causes transmission

of a token representing the open file response from the SMM. Node RCVFILERESP has

two inports and two outports. Inport O's execution condition will be satisfied upon

receipt of the third token from node split and every second token thereafter. Inport 1

is assigned a consume and threshold of 1 with 21 initial tokens while outport 1 has a

produce of zero. This means that inport l's conditions will be satisfied 21 times and

then it will block further execution of the node. Node RCVASO is similarly configured

to receive 20 blocks of the ASO software commencing with the fourth token from node

split. Thus, nodes RCVFILERESP and RCVASO alternate during the simulated download

of the 80K ASO file (open response followed by 20 blocks of data each followed by

a read status). Finally, nodes RCVATTRIBRESP and RCVATTRIB execute in a similar

manner on the 44th through 46th (final) token reccived from node split.

Other types of employment of port attributes for flow control can be seen in the arbi-

76

tration graphs. Figure A-12 is a graph of a module receiving its bootstrap loader and

ASO software. For CPU 22 (and 12), the final node to execute, node CHECKSUMAT-

TRIB places 5 tokens on the outgoing arc (node outportl) that connects nodes ASOCPU22

and ARBCPU22 on the startup graph. Figure A-58 is a subgraph of node ARBCPU22

where the tokens are received by inport 0 of node CALLCLUSTERARB. Inport 0 and

inport 1 of node CALLCLUSTERARB have a consume and threshold of I assigned. In

addition, inport 1 has an initial token to initiate the cycle through the delay node on

the parent graph (Figure A-19). This provides for five executions of this subgraph.

Each execution places a token on the arc connecting node ARBCLUSTER with node

LOADAS1 on the parent graph (Figure A-19). The receiving node in the graph of

node LOADASI (Figure A-59) is node OPENAS1. The inport of this node is assigned a

consume and threshold of 5 assuring that the graph will execute once after five cycles

through the ARBCLUSTER graph. Port attributes, similar to those assigned for the

loading of the ASO software, control the alternation between receiving responses (and

transmitting reads) and receiving data in the right-hand portion of this graph. After

execution, node RUNCHECKSUM places a token on the arc connecting node LOADASI

to node ARBHB on the parent graph. This token causes a single execution of node

MONITORHB in the subgraph of node ARBHB, (Figure A-60). Node MONITORHB sends

a token to node ORO, which executes upon receipt of a token on any of its inports.

Node ORO prodices a token that initiates the subgraph of node TRANSMITHB. This

stibgraph places a token on the outport connecting to node delay, which initiates subse-

quent executions of the cycle, and on a graph port toASSUMESSYSSUP, which connects

77

node ARBHB to node ASSUMESYSSUP on the parent graph. These tokens enter the

graph of node ASSUMESYSSUP, Figure A-61, where they enter the subgraph of node

ARBSYSSUP, Figure A-62, through graph port start and into node MONITORSSHB. In-

port 0 of node MONITORSSHB has been assigned a threshold and consume of 7 with

an initial token count of 2. This causes the graph to initiate upon receipt of the

fifth token from the hot backup heartbeat, and not to initiate unless it receives seven

more. The module must issue five non-colliding system supervisor heartbeats before

assuming the role of system supervisor and terminating the hot backup heartbeat.

The number 7 allows for six hot backup heartbeats to occur without reinitiating the

graph during this period. As it turns out, only 5 occur. Any larger number could

have been used. Upon execution, node MONITORSSHB places five tokens on the arc

to node TRANSMITSSHB which provides for five executions of the subgraph of that

node (there is an initial token on the arc from node delay). Each execution of this

subgraph, in addition to initializing the delay, places a token on each of the graph

outports. These tokens are passed to nodes STARTSYSMGT and STOPHOTHB on the

parent graph, Figure A-61. The inport for each of these nodes is assigned a consume

and threshold of 5; so, they will execute after five heartbeats. The four graph out-

ports connect to the system nicssages function where the supervisor role is initiated

(including continuation of the heartbeat); to node LPUCPU22 on the startup graph

to allow starting of LPU loading (the outport is misnamed "tonormalops"); to the

ARBHB node on the parent graph to stop the hot backup heartbeat; and to CPUI2

to reinitiate arbitration for hot backup. Each of these nodes passes a single token

78

except the one to ARBHB which passes 40 (any large number would do). Referring to

Figure A-60, the 40 incoming tokens through graph inport stop cause node ORO to fire

repeatedly (firing delay of zero). This results in tokens simultaneously on all arcs of

the cycle through node delay. Since the queue size is 1 for each of these arcs, none of

the nodes can execute. There is no place for an output token. This stops the cycle.

The same approach is used to stop heartbeats and LPUs on simulated failure and on

shutdown.

In the discussion of the ASO load, we encountered the feedback arc from an outport

to an inport of the same node with a 0 token produce and initial tokens sufficient to

provide the required number (and no more) of executions. This method is employed

on the top-level graph (Figure A-7) to restrict nodes POWERUP and FAILURE to a

single execution. The loop on node POWERUP appears redundant given those on the

nodes pwrondlyx on the startup graph (Figure A-7). When the entire model is running,

either approach would be sufficient. However, if one wants to run the startup graph

as a model itself, the loops on that graph are required. If one wants to delete the

processing time associated with simulating startup in order to investigate or debug

later portions of the model, he can change the attribute node-class of node STARTUP

on the top-level graph to leaf. Then the loop on node POWERUP is required. A similar

loop can be found on node COMPUTENEWCONFIG in the reconfigure graph (Figure A-

49) and on node CPU22WvSbutDn in the shutdown graph (Figure A-52). These allow

running these portions of the model independently.

79

4. Results

In this section we discuss model validation and provide some simulation outputs

that show how the ADAS model can be used to assess timing, performance, resource

utilization and the sensitivity of these measures to input parameters.

The original purpose of this model was to calibrate the abstraction against measure-

ments of the AARTS demonstration 3 prior to expansion of the model for analysis

of a full PAVE PILLAR mission applications system. The AARTS demonstration

3 has been delayed so calibration has not been conducted. The representation of

the modeled AARTS and LPU functions has been validated through continuous in-

terchange of model and AARTS design concepts throughout the project. In fact,

much of the effort in constructing the model was devoted 4o model changes reflecting

design changes in the ongoing AARTS development. Many of these design changes

were initiated by the discovery, in the modeling effort, of future problems should the

design contaue in its current direction at that time. While the functionality of the

model is verified, most of the numbers assigned for resource utilization still rest upon

tenuous estimates. Before expanding the model, these estimates should be replaced

by better estimates or by measured values. Following this, performance outputs such

as those in the following tables can then be compared with actual performance and

any necessary changes made to the model architecture.

In the remainder of this section, several tables are displayed and discussed. These ta-

80

bles show resource utilization and timing of events in simulations run with the model.

They are discussed in the context of how design characteristics input parameters or

modeling assumptions impact the various processes. All of the results are extracted

from ADAS outputs. Table 4.1 shows the commencement and completion times of

major stages of the basic model.

Table 4.1. ADAS Model: Subprocess Timing

Sub-Process Simulation time Simulation time Comments
Name Commencement (is) Completion (ps)
Startup 5177719 Up through loading of LPUs

Normalops-l OPS 5174636 6650000 Until CPU1 fails
Reconfiguration 6650000 8017927 Reallocation of LPUs
Normalops_2 8017927 9183419 CPU11 now off-line
Shutdown 9183419 9296302 CPU22 last to shut down

Table 4.2 displays the completion time of key events during system startup. This (ta-

ble) focuses upon the loading of the ASO software into modules, the loading of ASI

software into supervisory modules, and the loading of LPUs into the CPUs. These

activities terminate with the completion of the checksum on the download. The

current model configuration requires completion of the download of the bootstrap

loader, the ASO software (including checksum), and the LPU attributes file into one

module before loading of the next module commences. The AS1 software is loaded

into supervisory modules when they are ready without such a restriction. The only

constraint in the loading of AS1 software is contention with ongoing ASO loads for

shared resources. LPU loading (including the mission database file into supervisory

81

Table 4.2. Startup with Assigned Delays

TIME HARDWARE EVENT
(microsec) MODULE ______________________

1449514 MAB2CPU STARTUP:ASOMAB2:CHECKSUMASO
1936773 MAB1CPU STARTUP:ASOMAB1:CHECKSUMASO
2424031 CPU22CPU STARTUP:ASOCPU22:CHECKSUMAS0
2911896 CPU12CPU STARTUP:AS0CPU12:CHECKSUMASO
3419078 CPU21CPU STARTUP:ASOCPU21:CHECKSUMASO
3449520 CPU22CPU STARTUP:ARBCPU22:LOADAS1:RUNCHECKSUM
3931165 CPU11CPU STARTUP:ASOCPU11:CHECKSUMAS0
3948036 CPIJ12CPU STARTUP:ARBCPU12:LOADAS1:RUNCHECKSUM
4418746 M1553B32CPU STARTUP:AS01553B2:CHECKSUMASO
4908187 M1553B1CPU STARTUP: ASO01553B 1:CHECKSUMAS0
5017493 CPU1 1CPU STARTUP:LPUCPU1 1 :readlpul:RUNCHECKSUM
5039873 CPU21CPU STARTUP:LPUCPU21 :readipul:RUNCIIECKSUM
5097436 CPU1 1CPU STARTUP:LPUCPU1 1 :readlpu2:RUNCHECKSUMI
5142472 CPU21CPU STARTUP:LPUCPU21 :readlpu2:RUNCHECKSUM
5176190 CPU1 1CPU STARTUP:LPDUCPU1 1 :readlpu3:RUNCHECKSUM
5177719 na STARTUP:ENDSTARTUP

modules) commences only after all modules have completed the ASO download. The

LPUs are loaded sequentially in an individual CPU. Separate CPUs contend for re-

sources during LPU loading. It can be seen from Table 4.2 that the ASO download

for a module takes 0.49 seconds (rounded), with those conducted concurrent with

ASI downloads (CPU21 and CPU11I) taking 0.51 seconds due to resource contention.

The delay for checksum of the 80k file is 0.4 seconds and the bus transfer time for

82k words is 0.036 seconds. This means that 0.054 seconds of delay are attributed

to the functioning of the BTBIM, -).M, CPU (open and read command, etc.), and

read status reporting. The remainder of the table shows the interleaving of the LPU

reads.

82

Table 4.3. Failure and Reconfiguration with Assigned Delays

TIME HARDWARE EVENT
(microsec) MODULE
6650000 failure FAILURE
7900000 detect DETECT:DETECTMISNGPLSE
7901450 CPU22CPU RECONFIGURE:COMPUTNEWCONFIG
7997302 CPU12CPU CP12LOADLPU:CPU12LOADLPU:RUNCHECKSUM
7997679 CPU22CPU CP22LOADLPU:CP22LOADLPU:RUNCHECKSUM
8017927 CPU21CPU CP21LOADLPU:CPU21LOADLPU:RUNCHECKSUM

Table 4.3 shows similar data for the period from the simulated failure of CPU11

through the reloading of the LPUs into other CPU modules. As can be seen, the

time to react to a failure is dominated by the time to detect the failure (10 missed

pulses at 8Hz = 1.25 seconds). From detection of the failure through reloading and

checksum of all three LPUs took 0.12 seconds.

Table 4.4 shows the sequence of events during shlitdown. The events, STOPx, are

the final stopping of the indicated module. The shutdown process took just over 0.11

seconds. Also shown are the time -f completion of each LPU unload. The model, as

currently configured, assumes that all LPUs are stopped before unloading commences.

Table 4.5 shows resource utilizatioi during selected time periods. The utilization of

bus interface units and the M1553B module was much smaller than that of the modules

displayed in Table 4.5 and is not shown in order to reduce the size of the table. This

table shows that startup through arbitration utilizes the specialist and MAB CPUs

19%. The BTBCPUs have a slightly higher utilization as they broker the downloads,

83

Table 4.4. Shutdown with Assigned Delays

TIME HARDWARE EVENT
(microsec) MODULE
9183419 Token received to start shutdown
9184235 M1553B2CPU Cluster2ShutDn:STOPO
9184237 BTB2CPU Cluster2ShutDn:STOP1
9215986 CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU1
9221086 CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU2
9226086 CPU21CPU Cluster2ShutDn:CPU21 UnloadLPU:UnloadLPU3
9226700 CPU21CPU Cluster2ShutDn:STOP2
9228205 M1553B1 CPU Clusterl ShutDn:STOPO
9228207 BTI1CPU ClusterlShutDn:STOP1
9255165 CPU12CPU ClusterlShutDn:CPU12UnloadLPU:UnloadLPU1
9260165 CPU12CPU ClusterlShutDn:CPU12UnloadLPU:UnloadAS 1
9260979 CPU12CPU ClusterlShutDn:STOP2
9261865 MAB1CPU ClusterlShutDn:STOP3
9262532 MAB2CPU Cluster2ShutDn:STOP3
9291252 CPU22CPU Cluster2ShutDn:CPU22UnloadLPU: UnloadLP U 1
9296252 CPU22CPU Cluster2ShutDn:CPU22UnloadLPU :UnloadA S1
9296302 CPU22CPU Cluster2Sh,,tDn:STOP4

84

Table 4.5. Resource Utilization (Standard Delays)

Start Thru LPU LPU
Arbitration Loading Loading

Initial Reconfigure
Time Increment 4.451177 0.723211 0.115461
BTB1CPU 21% 3% 3%
BTB2CPU 21% 1% 6%
CPU11CPU 19% 31% 0%
CPU12CPU 28% 2% 64%
CPU21CPU 19% 27% 78%
CPU22CPU 28% 3% 62%
MAB1CPU 19% 1% 2%
MAB2CPU 19% 2% 2%
BTB 7% 7% 12%
MAB 0% 0% 0%
PIBUSi 1% 1% 1%
PIBUS2 1% 1% 3%
SMM 11% 11% 16%

The supervisory modules, CPU12 and CPU22, show the highest CPU utilization since

they must download the ASI software. The utilization of the buses is small. During

the LPU loading, CPU11 (3 LPUs) and CPU21 (2 LPUs) are significantly busy. The

low utilization of the BTBCPUs and the BTB reflect the fact that as many as 3 LPUs

are serially loaded into a single CPU with a large checksum delay between them. The

final column shows the utilization during the reconfiguration. LPU21 has two LPUs

continuing to operate during this period. A higher BTBCPU and BTB utilization is

achieved since loads and checksums can be achieved in parallel (1 LPU was loaded

into each of the three remaining CPU modules).

As stated before, the only "measured" data specific to AARTS that was available was

85

the simulation results for message 1O functions presented in quarterly review number

5 (QR5). For the model, we used the mid-point between these numbers and the goals

specified for these services. We ran a simulation using the actual QR5 numbers for

comparison. The method for estimating numbers for unknown message 10 and files

services used for this effort was the same as used for the basic model. Table 4.6,

a duplicate of Table 3.15 except for the numbers, shows the new calculations and

results. Tables 4.7, 4.8, and 4.9 show the timing with these numbers for the same

events as those shown in Tables 4.2, 4.3, and 4.4. We see that a large increase

in the CPU times required for files services had only a small effect on the startup

times, about a 3% increase. Startup time is dominated by the checksums. The effect

during reconfiguration was about twice as large (6%), while that during shutdown

(mostly message oriented) was 8%. Table 4.10 shows resource utilization using the

QR5 delays. This table can be compared with Table 4.5. As can be seen, the larger

messages and files services times had little effect on resource utilization.

Finally, runs were conducted using the two sets of firing delays during a period of

normal operations. Each period commenced with the completion of the startup and

configuration processes. Each was run for an identical simulated time period. All LPU

outputs fired the same number of times during the time period for each set of firing

delays. Table 4.11 shows the utilization of the CPUs during this time period. The

impact of the increased message passing time, while small, is more pronounced during

normal operations than during the file loading periods where checksums dominate.

86

Table 4.6. Time for Message and Files Services (QR5 Numbers)

1 0

Cl)C
w o 0 >e ao C

w Nn Ca) Q 0 M -

Cx L C M Co oana a C " lt O C MN

M V , L V 0 I4 4- el41L M
0 +0 0 +Ol~~~a ..- e .

++ $+ +

3t CO

4)~~~ 41+44 ,n~

-4 C) 4 0+
+ o +4 I 41 CO

E4.

0 4.0 Q C4 +1 4~ C 41 4.

V x) a14 41 (' e a
an~~~. 0 114 4 C Na +414)I4C V 41 -4

'a-4 4. 0 a. V) 41 N 0
010 mo 0 0 14 V 0

rn04 0 0 CI 0 41 1

41 4.4 0 -0

- C,

41 0 4 x .x. x
(4 00.

V~ *0

0O 0 41

VV C1

V 110 0H C 4-

aC . 4.'

a x x 0 0-. 041'.4~~- , 0 w M4 1. 1 a
'. 4. -W CC Nj' 9

= 0 C41a.
C.4 .04 - 0rr o

0 x x x ,x x 414 x0 V m 4 A UC -WCN0 0 UC

0j to4 0. 4.C CCC 0 V W
C. 0 000 0-4 0. 0 1.5).CN ~ ~ 1 r-N. 11041

10 404 0 *4 04.

a~~~. CC 4.4 *.-40UV 1 C1
41 4)4 041 w1 41.0 0a

o. P) 0. ..C .C.C .a- .0 0 1 CL0' C k jC1 M M4 410 -a . .x
C> 4j 414-4 0 .4.aU j0) C~0 C))4 411 4a..

C C1'44 41 !. 00 (a0 0 1
41 g V1 a 40 0 - 11a
C) 410 '444.-0
U. 41 04..E C K 29 w) a) a1 UC4. V-.4 .

4
a M"

0 ~ 4)V) 4M 00 VV 441~4cj.87-

Table 4.7. Startup with QR5 Delays

TIME HARDWARE EVENT
(mnicrosec) MODULE _______________________

1466686 MAB2CPU STARTUP:ASOM AB2:CHECK SUM ASO
1972272 MAB1CPU STARTUP:ASOMAB 1:CHECK SUM ASO
2477519 CPU22CPU STARTUP:ASOCPU22:CHECKSUMASO
2982934 CPU12CPU STARTUP:ASOCPU12:CHECKSUMASO
3509585 CPU21CPU STARTUP:ASOCPU21:CHECKSUMASO
35327101 CPU22CPU STARTUP:ARBCPU22:LOADAS1:RUNCHECKSUM
4034098 CPU11CPU STARTUP:ASOCPU1I1:CHECKSUMASO
4036766 CPU12CPU STARTUP:ARBCPU12:LOADAS1:RUNCHECKSUM
4539370 M1553B2CPU STARTUP:AS01553B2:CHECKSUMASO
5045518 M1553B1CPU STARTUP:ASO1553B1:CHECKSUMASO
5167280 CPU1 1CPU STARTUP:LPUCPU11 :readlpul:RUNCHECKSUM
.5185394 CPU21CPU STARTUP:LPUCPU21 :readlpul:RUNCHECKSUM
5249141 CPU1 1CPU STARTUP:LPUCPU11 :readlpu2:RUNCHECKSUM
5291346 CPU21 CPU STARTUP:LPUCPU2L :readlpu2:RUNCHECKSUM
5330662 CPU1 1CPU STARTUP:LPUCPU11 :readlpu3:RUNCHECKSUM
5332659 na STARTUP:ENDSTARTUP

Table 4.8. Failure and Reconfiguration with QR5 Delays

TIME HARDWARE EVENT
(inicrosec) MODULE
6650000 failure FAILURE
7900000 detect DETECT:DETECTMISNGPLSE
7901450 CPU22CPU RECONFIGURE:COMPUTNEWCONFIG
7993796 CPU12CPU CP12LOADLPU:CPU12LOADLPU:RUNCHECKSIJM
7999823 CPU22CPU CP22LOADLPU:CP22LOADLPU:RUNCHECKSUM
8023243 CPU21CPU CP21LOADLPU:CPU21LOADLPU:RUNCHECKSUM

88

Table 4.9. Shutdown with QR5 Delays

TIME HARDWARE EVENT

-(microsec) MODULE ________________

9339641 Token received to start shutdown
9340458 Ml 553B32CPU Cluster2ShutDn:STOPO
9340460 BTB2CPU Cluster2ShutDn: STOP 1
9374756 CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU 1
9379756 CPU2 1CPU Cluster2ShutDn:CPU21UnloadLPU :UnloadLPU2
9384756 CPU2 1CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU3
9385721 CPU21CPU Cluster2ShutDn:STOP2
9387507 M1553Bl1CPU Clusterl1ShutDn: STOP0
9387509 BT11CPU Clusteri ShutDn:STOP 1
9414417 CPU12CPU ClusterlShutDn:CPU12UnloadLPU:UnloadLPUl
9419417 CPU1 2CPU ClusterlShutDn:CPU12UnloadLPU:UnloadASl
9420081 CPU 12CPU ClusterlShutDn:STOP2
9420968 MABl1CPU Clusteri ShutDn:STOP3
9421635 MAB32CPU Cluster2ShutDn:STOP3
9450354 CPU22CPU Cluster2ShutDn:CPU22UnloadLPU:UnloadLPU 1
9455354 CPU22CPU Cluster2ShutDn:CPU22UnloadLPU:UnloadAS 1
9455404 1CPU22CPU Cluster2ShutDn:STOP4

89

Table 4.10. Resource Utilizatir-,n (QR5 Delays)

Start Thru LPU LPU
Arbitration Loading Loading

Initial Reconfigure
Time Increment 4.509041 0.792022 0. 116594
BTB1CPU 21% 4% 5%
BTB2CPU 21% 2% 7%
CPU11CPU 19% 30% 0%
CPU12CPU 28% 3% 66%
CPU21CPU 19% 27% 79%
CPU22CPU 28% 4% 63%
MAB1CPU 19% 1% 2%
MAB2CPU 19% 2% 2%
BTB 6% 7% 12%
MAB 0% 0% 0%
PIBUSi 1% 1% 1%
PIBUS2 1% 1% 3%
5MM 11% 11% 16%

Table 4.11. Resource Utilization During Normal Operations

Module Standard QR5
Delay Delay

CPU11CPU (3 LPUs) 16% 19%
CPU12CPU (Hot Backup) 1% 2%
CPU21CPU (2 LPUs) 9% 12%
CPU22CPU (Sys Supervisor) 2% 2%

90

5. Model Modification or Expansion

The details presented in Sections 3.3, 3.4, and 3.5 are intended to provide the user

with sufficient understanding of the model and modeling assumptions to be able to

modify the model to accommodate different assumptions or expand it for a broader

scenario. Some modifications might include any or all of:

- Expansion to more or larger clusters

- Expansion to a larger number of LPUs

- Larger and/or more complex LPUs

- Different file access routes, i.e., memory modules in clusters

- Different failure patterns

This section presents further elaboration on model expansion and modification.

Figure A-63 is a top-level graph for a 4 cluster configuration. No change has been

made in the LPU, failure and reconfigure portions from the graph in Figure A-6. The

only changes on this graph are an increased number of arcs from nodes STARTUP and

SHUTDOWN to node SYSTEMESSAGES and a reduction in the number of arcs from

node POWERUP to node STARTUP.

Earlier, in the discussion of the startup graph, (Figure A-7) we stated that the graph

contained more detail than is normal. For this 4-cluster model we incorporate the

same functionality into a hierarchical expansion. Figure A-64 is a first-level startup

91

graph for the 4-cluster model. As can be seen, this graph shows each cluster receiving

a "powerup" input and outputting the tokens to initiate the system messages for the

cluster modules. The node ENDSTARTUP, as in the basic model, receives a token from

each cluster indicating completion of configuration and outputs a token to initiate

normal operations. This node has 0 delay and consumes no resources. In addition,

each cluster not containing the system supervisor transmits a token to the system

supervisor cluster, node CLUSTER3, to signify completion of arbitration and ready for

configuration.

Figure A-65 shows the subgraph of node CLUSTER3. Here we see the 4 primary

phases of startup represented separately. Nodes SUROM, LOADASO, ARBITRATION,

and CONFIGURE represent the cluster functioning during the respective phases. Each

"phase" node is connected to a node representing the memory functions during that

phase (nodes LOADASOTOBTB, LOADASOTOMODULES, LOADAS1TOCPU, LOADLPUS).

Each of the memory function nodes would contain one-half of the hierarchy below

the equivalent memory function node on the basic startup graph. For instance, node

LOADASOTOMODULES would have a subgraph that consists of one row of internal nodes

and their inport and outport nodes from Figure A-17. The subgraph for the internal

nodes of these "half graphs" would be the same graph used in the basic model.

For the current PAVE PILLAR concept, all memory functions are mapped onto a

central system mass memory. For a concept with a memory module in each cluster,

the memory function nodes would be mapped onto the separate memory module

92

in the cluster and the arcs between cluster functions and memory functions would

represent PI-bus instead of HSDB transfers. In this case, if the cluster memory is

volatile, we would need a graph inport to a memory node coming from the SMM

(which would be represented on the parent or a higher level graph) for loading the

cluster modules. Looking again at Figure A-65 as a whole, we can see that the BTB

actively loads the ASO software in the suRoM node and outputs a token to initiate its

system messages. All modules output tokens to initiate the ASO passive loads. Passive

loading, node LOADASO, outputs tokens as modules start the ASO software to initiate

the appropriate system messages. In addition, the CPUs output initiation tokens

to the arbitration process and the MAB signifies "ready" for configuration. Upon

completion of arbitration, the system supervisor (or Hotbackup or cluster supervisor)

outputs a token to initiate supervisory messages and the CPUs signify "ready" for

configuration. In the other clusters, the cluster supervisor signifies "ready" to cluster

3. These are the three external inputs to node CONFIGURE. When the configuration

is completed a token is output to node ENDSTARTUP on the parent graph.

Two nodes on Figure A-65 have been expanded to show the connection to the graphs

in the basic model. Figure A-66 is the subgraph of node SUROM on Figure A-65. It

is readily seen that this graph is the upper left corner of the original startup graph

(Figure A-7). Outports have been added for the connection to the memory function

and to the load ASO function. From this point downward, the graphs from the original

model are used. Figure A-67 is the subgraph of node LOADASO in Figure A-65. This

93

graph is cut from the upper portion of the second column of Figure A-7. Graph in

and outports have been added for the connections to preceding and following columns

on Figure A-7. Again, the hierarchy below the nodes on this graph is that of the basic

model.

The remainder of startup would be modeled in the same way.

Figure A-68 is the new subgraph of node SYSTEMESSAGES on the top-level graph,

(Figure A-63). This graph is divided into four sections, each representing a cluster

with its initiation inputs from startup and its termination inputs from failure or

shutdown. A cycle between the cluster supervisors of clusters 0, 1, and 2 and the

system supervisor in cluster 3 handles the ping and ping acknowledge. One node,

CLUSTER3, has been expanded in Figure A-69. This graph is basically one half of

the system messages graph in the basic model. The other clusters would differ only

in having only one inport and one outport to another cluster (CLUSTERS) instead of

three for the ping and ping acknowledge. The hierarchy below these graphs is the

same as for the basic model.

Referring again to Figure A-63, changes similar to these just discussed would be

needed for the other portions of the model. An expanded set of LPUs would expand

the grap:,; of nodes NORMALOPERATIONS, SENSORS, and PILOTINPUT. This might

well require a grouping of related processes in the first level with the detail pushed

down further as we showed for STARTUP and SYSTEMESSAGES. One might also con-

94

sider moving the failed and restarted LPUs, or just the restarted ones, into a separate

node. If LPUs that access files into system or duster memory were included in an

expanded model, addition of hierarchies to represent the BTBIM memory functions

similar to those in startup and reconfigure would need to be incorporated. If more

than one failure is desired, one would either expand or duplicate the failure through

reconfiguration chain. Shutdown would be expanded in a manner similar to that done

for startup and system messages.

Finally, if one determines through a combination of calibration and simulation rul.

on an expanded model (as is the case using the demonstration 3 scenario) that the

PI-bus interface units do not have a significant impact on performance or timing of

events the simulation time can be reduced by essentially "shorting out" all of the

diamond shape mesxage graphs, (see Figure A-21). This would be accomplished by

changing the node-class attribute of the parent node (on Figure A-20) to "leaf,'"

ensuring the parent node is mapped onto the proper PI-bus, and setting its firing

delay to that used in the subgraph. This can be done throughout the model. The

result is that for each of these changes, the simulation software has only one node

to track and schedule rather than five. If for some other analysis the user wishes to

reincorporate the detailed subgraphs, all he needs to do is change the parent node's

node-class attribute back to "internal." The subgraph will then be expanded and all

other attributes of the parent node ignored.

95

6. Conclusions

In Paragraph 1.1 it was stated that this modeling effort was the first phase of a

two-phase effort. Development of this model was to be followed by validation (or cal-

ibration) against actual measurements of performance of the AARTS demonstration

3. Validation was to be followed by expansion of the model to a full PAVE PILLAR

mission applications architecture to be used to investigate data transfer functions.

The delay of demonstration 3 (and completion of AARTS development) prevents val-

idation of the model against measurements of the actual system. (The system does

not yet exist). However, the model has been continuously validated during construc-

tion through briefings, technical interchange and demonstrations with the AARTS

developer. The principle measure of a model of a system still under design is how

well (at any given time) the model represents what the designers visualize as their

finished product. Since design decisions continue to be made or revised, this presents

a "moving target" that requires frequent, if not continuous, interchange between the

modeler and the developer. That interchange was achieved in this effort with the

graphical presentation of the ADAS model facilitating communication. The results

of the modeling effort have highlighted the value of developing an executable sim-

ulation of a system as the design and development progresses. In order to develop

a model that can be executed, it is necessary to pursue the implications of design

decisions beyond the boundaries of the specific development effort (interface with

other systcns, hjardware etc.). This broader view of the system provides insights into

96

potential clashes or mismatches across these interfaces that can lead to expensive

and time consuming corrective action if not discovered until late in the development

cycle. These insights often lead to design changes that "invalidate" the model version

that predicted the need for the change. This requires alteration of the model and

revalidation in the context of the modified design. This was the course followed in

developing the basic model as delivered.

The following are some examples of the benefits obtained from this modeling effort,

beyond that of producing a model to serve as a basis for further expansion and

analysis of Advanced Systems Architectures. These examples highlight the value of

simulation of a component (AARTS) during design of that component in a system

(AARTS, LPUs, plus VAMPs) context.

Early in the modeling effort ADAS graphs were developed for the initial loading

of modules that were very much like the current model of passive loading of ASO

software. The modeling was based on appendix G to reference 17, which is the

description of SUROM Processing developed by Westinghouse Electric Corporation,

the developer of the VAMP hardware. Following this document the ADAS graphs

assumed that after completion of BIT a module repeatedly places a two-word "ready"

message onto the PI-bus at regular intervals. The loader (in this case the BTBIM),

when ready to load the module, responds with a four-word message (word count,

1750A Data Destination Address (DDA), 1750A Execution Start Address (ESA),

andl Expected Checksum). Upon receipt of this message, the SUROM software sets

97

up the PI-bus interface unit to point to the DDA, receives the bootstrap loader,

checksums the load, and transfers control to the ESA. Then the bootstrap loader

proceeds to download the AARTS software. When our approach was communicated

to the AARTS development team we were informed that the AARTS design would

not include a bootstrap loader. The design approach was to load the ASO software

directly following the four-word message. We challenged this approach, pointing out

that the reference limits the maximum word count in the four-word message (and

presumably the download) to 52K. After also recognizing that the one word (16-bit)

word count would not accommodate the AARTS file size, we were informed during

"final" demonstration of the startup model that the bootstrap loader was, in fact,

necessary. The ADAS graphs were redone. This example highlights the fact that

the modeling effort itself benefits and supports the design process. Modeling with an

architecture tool such as ADAS can identify problems at the interface of the system

being designed early in the design phase (had this modeling effort started earlier, this

problem would have been discovered earlier) rather than, as is too often the case, not

until integration testing.

During the effort to calculate firing delays for the model it was found that the P1-bus

data transfer rate we were instructed to use was five times faster than the assumed

memory access rate. We could find no indication of a buffer in the PIBIU and this

was confirmed. The model, as it now stands, includes a small buffer in the PIBIU, a

faster memory access rate, a lower P1-bus transfer rate, and double-word access (32

98

bit) between PIBIU and memory. This is a problem, we are informed, that is to be

corrected in this manner by WEC, the hardware developer.

Both of the preceding examples can be summed up in a single observation: Devel-

opment of an executable ADAS model of an ongoing design brings to the designers

an increased awareness of constraints imposed by hardware or interfacing software

systems.

Finally, some insights into the AARTS design have been derived from the model-

ing effort and the results of simulation runs. Two have already been mentioned in

Chapter 4. These are the dominance of checksum times in software loading and of

"detection of failure" in reconfiguration. Both of these may be the result of high

estimates of the time consumed by processes that can be speeded up. The checksum

time is the result of a simple estimate, 10 instruction cycles per word, and can be

refined. In the case of the failure detection, it may be no more than a bad choice of a

single parameter, PulseTimeout. Table 6.1 shows the value cited for this parameter

in five different parts of Reference 11. Three of these are found in a subparagraph

titled "Limitations" and two in the discussion of unit processing. They vary from

three pulse periods (.375 seconds) to ten pulse periods (1.125 seconds). The latter

is used in the model. This can be changed by simply changing the value of the at-

tribute firing-delay on node DETECTMISNGPLSE in the subgraph of node DETECT in

the AARTS graph. Finally, some concerns have been raised about the behavior of

the AARTS itself.

99

Table 6.1. Values for Pulse Timeout

(Source: Reference 11)

Software Unit Processing or Limitation Page Number Value
SE.Kernal limitations 24 5 pulses
SE.Cluster Management text 32 5 pulses
SE.Cluster Management limitations 37 10 pulses
SE.System Management limitations 48 10 pulses
SE.System DB Management text 51 3 pulses

The first concern is with startup sequencing. In the model, as delivered, sequencing

has been forced in the hierarchy below the node that represents the SMM functions in

the passive loading of the ASO software. In order to accelerate startup, particularly in

a larger system than the one modeled here, one may want to allow loading of multiple

modules in parallel. In fact, the sequenced loading has never been confirmed to us

as a feature of the AARTS software. It was a "ground rule" we were given to work

with. In such a case, one must be sure that the MABIU in a cluster is loaded before

any CPU module commences hot backup arbitration. Otherwise one could end up

with more than one system supervisor.

A similar concern has to do with when the system supervisor commences configuration

(loading LPUs etc.). The model, as delivered, will not commence configuration until

all models have loaded and started ASO. If a module fails on startup in the model as

configured, configuration will not take place. Since we were instructed to consider no

BIT failures, this is not a problem with this scenario. However, some means should

100

be provided for the system supervisor to determine when to start configuration that

allows for failure of one or more modules in the startup process. The algorithm

must be such that it does not cause premature loading into a reduced hardware

configuration when the full configuration actually does become available. This is not

a problem in the demonstration 3 scenario since all of the LPUs could be run in a

single processor. The expanded ADAS model of phase II could produce performance

assessment of alternative approaches to this feature.

101

References

[1] Architecture Specification For PAVE PILLAR Avionics, Final Technical Report
for period Sept. 1985 - Oct. 1986, AFWAL-TR-87-1114, Wright-Patterson Air
Force Base, Ohio, January 1987.

[2] E. Schelling, L. McFawn, and D. Williams, Critical Item Development Specifica-
tion for the Avionics Bus Interface Module for the VAMP, SSTA10301, WEC,
Baltimore, MD, May 1990.

[3] Society of Automotive Engineers, Linear Token Passing Multiplex Data Bus
User's Handbook, AIR 4288, Draft Issue 2, Phoenix, AZ meeting of ASD, April
1990.

[4] Architecture Design and Assessment System (ADAS), USER Manual, Version
2.5, Research Triangle Institute, Research Triangle Park, NC, 1988.

[5] Listings of Demo-3 LPU Packages as of that Date, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, July 1989.

[6] Software TLDD For AARTS ATSD Subcontract (Boeing), Boeing Advanced Sys-
tems, Seattle, WA, December 1988.

[7] Software Detailed Design Document For AARTS ATSD Subcontract (Boeing),
Boeing Advanced Systems, Seattle, WA, December 1988.

[8] Interface Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, May 1988.

[9] Interface Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1990.

[10] Software Detailed Design Document for the AARTS (Without Section 3), TRW
Avionics & Surveillance Group, Dayton Engineering Laboratory, Beavercreek,
OH, September 1989.

[11] Software Detailed Design Document for the AARTS (Section 3), TRW Avion-
ics & Surveillance Group, Dayton Engineering Laboratory, Beavercreek, OH,
January 1991.

[12] Software Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1989.

[13] Software Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1990.

102

[14] System Segment Specification for the AARTS, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, September 1987.

[15] System Segment Specification for the AARTS, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1990.

[161 System Segment Specification for the (PCS) for the VAMP, Westinghouse Elec-
tric Corporation, Baltimore, MD, October 1989.

[17] Functional/Interface Specification for the 1750A CPU, Westinghouse Electric
Corporation, Baltimore, MD, September 1987.

[18] Functional Interface Specification for 1553B, Westinghouse Electric Corpora-
tion, Baltimore, MD, September 1989.

[19] Slides from the AARTS CDR, TRW Avionics & Surveillance Group, Dayton
Engineering Laboratory, Beavercreek, OH, May 1988.

[20] Slides from the Second Quarterly Review, TRW Avionics & Surveillance Group,
Dayton Engineering Laboratory, Beavercreek, OH, August 1988.

[211 Slides from the Third Quarterly Review, TRW Avionics & Surveillance Group,
Dayton Engineering Laboratory, Beavercreek, OH, January 1989.

[22] Selected Slides from the Fifth Quarterly Review, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, November 1990.

[23] T.R. Allen. TRW Interoffice Memorandum, Subject: SMM/AARTS Interface,
Dayton, OH, April 1990.

[24] J.W. Stautberg. FAX Subject: Summary of LPUs, January 1991.

103

GraphGIPSI HDLSimulation

Node/Arc Configuration (SmltoInefcPrga
TemplatesFie

o ProcessaC/AdaMModul
Filesi Files

* 5 Prcess utput

Fiur A-.hADSSseCofgrtn

EDIGRF ASH C A-i

CLUSTERI MASSMEOR CLUSTER2

Figure A-2. Top-Level ADAS Hardware Graph

A-2

N M15 BIN B S

HABIi CU11M153B1CPU12 STBINI

MUT M15 OUT BT UT

E PIBU SIA E P1 BUSlB

Figure A-3. ADAS Hardware Graph of Cluster 1

A-3

CPU12CPU

CPLJ12PIBIJ

Figure A-4. ADAS Hardware Graph of a CPU Module

A-4

Figure A-5. ADAS Hardware Graph of a Bus Interface Module

A-5

OWERU

F -SENSORS
STARTUP

RECONFIGUR

SHUTDOWN

Figure A-6. Top Level ADAS Software Graph

A-6

inp SURMCU2 AS10P 2fAR--P--

inpO~~4- BC71122B AS)4B2- LPUCPUA2

inpg-- SUROMBTB2 ASOBTB2 TB ASILOAD TB2LPULOAD

MMASOTOBT SMMASOCPUS SI4MASICPUS W4LPKJLOAD ENDSTARTUP

iflp StJROMBTBI ASOBTBlB1S1O T~lLPULOAD tr

1npac -. URN153 AS01 BI

ln SROCP11AS CPUII AIPBCPU11

1n UOMItlAS CPU12 ARBCPUI PCP1

Figure A-7. Startup Graph

A-7

S ~JPBTBDBTBL fl

BTB XJ4ITREPAfl marBul

J. i.0

RCV4WORD TIU

Figure A-8. I3TBIM Active Load

A-8

inport rmm

RCVRESPOCE SCVTAT

OPENLPrJLOC
RALUO

WAIT4TOKENO ATTEN

BTB 0MTPNBBIXIRA

Figure A-9. BTBIM Read LPU-ATTRIBUTES File

A-9

.Plit2

MAIT4?OKM42

XKITDATAO MTTDATAI

WAIT4TOKEN1 MZW3

WRI?4?

5TM0 BTSI

E- -p-, F- ,11 3 j

)oleo

Figure A-10. SMM Load ASO into BTBIMs

A-10

.NIPi1

Figure A-11. SMM Load LPU-ATTRIBUTES File into BTBIM

A-1l

MOI RD X~4m RV5OO? RCwJOimv RCVAM DATA VA TA1!RCB CVKT-R1 A

CUTUPOM BPPOOT can= Kho

Figur A-1. CP Resiv BTAOOTadAOLa

. A-12LZ9~xLAT.

7not

split

Figure A-13. BTBIM Conduct Passive Load of Clients

A- 13

fromsmm

btbcmpitbo E romcpu

split

Figure A-14. BTBIM - Client Level

A- 14

roma I bbcnp bootro m _

RCVRADRE RCVWORDRCVRESPONSE

XDTFA UIW4WORD1 READOOT

WAIT4TORN

FigureKEN A-5 I3TIMtoSM

FigreA-5.BA-1 to5 M

WR XTSPITDATA MITDATA

PiUS TPIIUPIBUS TBPIBIU P19138 TBPXBIU IPIB913 91

Figure A-16. BTBIM to Client

A- 16

nort Inar inar in r

mablasO cpul2asO cpUllaSO ml553blasO

loip oI outo I out or uo

iprtl or in or in or

mab2asO cpu22asIi cpu2lasO mI3I3b~Ea IJ

ou or ou or ou or ou or

Figure A-17. SMM Passive Loading of 8 Modules

A-17

WAIT4TOKEHO WA!?4TOKENI.IT4M 3Wl4OM lrTogrM

37S31U MD1JY IUl flT32 BDIU2 V33DDI TD4 Del

XHITSTTU82 kliWX3U?3 T AIU&4

ml?4 mm MIT4TRM6 hI41Q(N

Figure A-18. SMM Passive BOOT and ASO Load to a CPU

A-18

SAsostarted

Fi ARBCLUSTER fly t

trombtb

E OAD S i

ARBHB

I
ASSUMESYSSUP

Figure A-19. Arbitration by the Winner of the System Supervisor Role

A- 19

mnpartO rmt

splitr RCVONTATS

EuDATATS

OPENISOBRCVRESPONSE______

ITCLUS1CONFI M4ITCP21CONFI

CCBEXECUTIONO CCBEXECUTIONI. CCBEXECUTION2 ICCBEXECUTION31

PIBUSO PIU1P 2PIBUS3

toimbtopl

Figure A-20. System Supervisor Load LPUs

A-20

inport

Figure A-21. P1-bus Transmission

A-21

ERCVCONF IGREQ

FCALLLOADLPUS

E readpul

E readlpu2

I CCBEXECUT ION]

EPIBUS]

toflormaT ops toc ussup

Figure A-22. CPU Load Two LPUs

A-22

OPENLPU EDP

EXECU ECCBO EEEC1

PIBUSOPI

Figure A-23. CPU Load on LPU

A-23

tromsnmo rromonin romsmun

trmp2 romcpul fromcpu~l

cp22readmisandb IIII~i reaI iII cp2lreadlpu2

ocp U ocpul tocpu

Os a

Figure A-24. BTB PASS Tree LPUs

A-24

RCVLPUREO CRSOS CD

BTB BThIU PISUSO IBS

Figure A-25. BTB PASS on LPU to a. CPU

A-25

fromcu22 romcp~1O romcpu~l

miondEI LPUcP2 Z3~CP2IZ

I tocpu27 tiocpu21 t 0 c-pu

fromcpu12 fromcpullO fonpllfocul

LissoniEJ121U~p1 111cPKJ 11±1cp

tocp.u 7 tocpul1 tocpu11 iEo-Cpu

Figure A-26. SMM Download LPUs to CPUs

A-26

in rt

split
4

T

RCVOPENLPU RCVREADLPU

XMITSTATUSO XXITDATAO XMITDATAl

WAIT4TOKENO WAIT4T

7 7
OKE Nl

WAIT4TOKEN2

I

-

BTBBIUO BTBl BTBBIU1 BTB2 BTB13IU2

join2joinO
joinl

7 v
"TB

XMITSTATUSI XMITSTATUS2

WAIT4TOKEN3 WAIT4TOKEN4

BTB3 BTBSIU3 BTBBIU4

join3 join4

joinS

ou por

Figure A-27. SMM Download on LPU

A-27

fromcp2 inport

RCVREQMSG

IMLPUSGI

WAIT4TOKEN

____MAB

mabtocpl

Figure A-28. Configuration Request Placed on MAB

A-28

I n ort

split

?4ABlBIU MBMAB2B IU

outort

Figure A-29. MAB Transmission

A-29

frommab inport

CI

PIBTJS

I tocPU127

Figure A-30. MABIM Place Configuration Request on P1-bus

A-30

ru
I a Usta F e I INURENETERM

CPU12 CPU22

I I AtartrIconflol

cpUll BTB2

I I fro Wtdcwn2 I .8o.tq gi=

HIL553B1 NAB2

asostarteC4 I anusta

KAB1

M155382

I asost& te(lb I

Ot4 I froMjhME2=

BTB1

Figure A-31. System Messages Graph

A-31

as~started

CNRCVSTATREQI CNXNITAPRAY CNXMITCLPING CNRCVPINGACK-1

CNMIThODCNFIG CNRCVSTATREQ CNX14ITNODPU-SE

CXIODSTAT FoCU2so

spRit

FigureO A-2 peils Sse Msae

a-la

asOstarted

spplito

Figure A-33. Supervisor Module System Messages

A-33

inporti~~~ innrponprtrtpot

RCVCPU2 RCVMAB RCV15SL RCVBT

XMITAK X?4TACKOXI4ITCN1 XITACK

PIBIU30 P IBIU 22 PIBIUO PIBIUOO

F CCP21 R MAB2C ?SRCV553BRCVBT

TPU20 PIU21 PIBS22 PB 23

Figure A-34. Cluster Supervisor Acknowledge Ping

A-34

CONECMIT

CNXMXTHS SCLPL9

aplito

ORO ~
la ela

XMITHSDBCLPULSEq XMTPIBCLPLS

MKB2 Splitl

MW.D1 PIB I UG PIBIUl P151132 L PS

CP21RCV MB2RCV .113.1:V

Figure A-35. System Supervisor Heartbeats

A-35

inport

XMIT

CCBEXECUTION

PIBUS

FoutportO 71outportl

Figure A-36. Transmit Ping or Pulse

A-36

split

Figure A-37. P1-bus Broadcast

A-37

inport-

Figure A-38. P1-bus Transmission with Two Outputs

A-38

0
I0
0

0
0

*z z
0 0

w zz

FiueAcooaaI~ 9 fDmnsrto

inport 1 nportl

AIRDATAINSA

Figure A-40. Sensor Input

A-40

_l
c CP I

NITION 01

> NAVIGTOi

U IOW.-

SSENSORMGHT1

DGSITERACE

Figure A-41. Normal Operations

A-41

CNRCVGU DWAYPNT

CNRCVMMPKEY k4AB2BIUO HAB2BItJ1 RCVWAYPOINT

CNRCVIMFKKEY RCV~t4P]KEY RCVIM FKKEY XI4ITIN PKCMO

CNXI4ITFLYTO CCBEXECUTIONO CCBEXECUTION1

CNMITMMLP
CX PMPPIBUS21

PIBUS22 _

CNXMITPILOTI4I

PIBIU1 PIBIUO

CNX 4IMFKCND

CALCULATEMODE: RCVMFKMSG

0R0 XNITHMPLAUP XMITIMCD

XMITARRAY XMITMISS4ODE

rCCBECECIO

R2OR 1 XMITFLYTO

IUS2OCE:CUTION21 CCBECECtJTION3 CCECUTON4

PlB IU3III

14ASUPDTARRAY2 TUS3PTW2

PIBIU2 PIBIU5 jPIBIU4

MAflO MA BI I

Figure A-42. Cockpit Interface LPU in CPU21

A-42

00R

CCBEXECUTIONO CCBEXECUTION11

C ARATAIPIRAA IPND

PIBS13PIBS3O

PIBIUOPCBECOION IB IEU4IN

XTARRAY CIA AACPNDT

JCCBEXECUTION4 CE2CT~4

C~U1 NAVIUD CVB NSB

GUIDRCVMSCO61 DGSRCVMSGO7 GUIDCSGI DGSRVCMSG1::

Figure A-43. Sensor Management LPU in CPU 11

A-43

S litS

CVAI dSE1S0
CVINSENSO

CMPAI RATA CHINSDAT

- !: CBEXECUTI ON CBEXECUT ION]

CCNXCTIOICRDE!JIO

IRCVADRCVNSG1 DRCVSG1 NVRC?4

FigureRA A-4IesrMngeetLUi P

I JCMAIRDAA CMPA-44T

IZI

A-4

in rtO in rt2 i at

CNRCRSICt4T

CNRCVFLYTO H3

CN RCVNAVST R

CNRCVINSDAT

CNRCVAIRDAT
HGAPIT

C NXSTEFRN
COMPUTSTEER

7

CNXMITTER R

CNXMITGUIDWAYPNT PBV

XMITSout rt

Fiur A46 Giane PUinCP2

9 - 1 1PIAUS6

FCNRCRSTCNT

CNRCVST EER

CNRCVNAVST HZ16

CNRCVINSDAT

ORi

CNRCVAIRDATI

CNXMI TMMB1

CNJSMITMMB2

CNXI4ITMISC

XI4ITARRAY

CCBEXECUTIONO CCBEXECUTION1- CCBEXECUTION2I

*PIBUS10 pIBEus11PBU1

PIB IUO PIB IU1 l U

FMABIJPD TARRAY M155 13 M55I O

Figure A.-47. DGS Interface LPU in CPU 11

A-47

DETECTMISNGPLSE

FXMITCONFIGCW

F CCBEXECUTIO0NO

MAB1PIBXu

MABICPU

MAB

MAB2CPU

F CCBEXECUTION

P1 BUS 2

CPU22PIBIU

SSRCVMSG

Figure A-48. Detection and Reporting of Failed CPU

A-48

F COMPUTNEWCONFIG

XMITCL1CONFIG

CCBEXECTJTIONO

PIBIUO

MAB 2CPU 7r XMITCL2CONFIG

m IB

MAB1CPU I C2OADLPU CCBEXECUTION2

j~CCLT.TION1 PBS

PIB USI PBU

CP 12RCVMSG CP22TA~ ~ CP2 1LOADLPU

CP12-CADLPUI CP21STARTLPU

CP12STARTLPUJ

Figure A-49. Reconfiguration

A-49

inport

CP22LADLP

BTBLOADLPU

SMMLOADL PU

loutporti

Figure A-50. Load on LPU

A- 50

in ort

RT WAIT4TOKEN

XMITONIRT EII B2 CPU

PIBUS~O PIBUS1

PIBIUOPIU

MAIPU F CU2P

Figure A-51. Start on LPU and Transmit Configuration Report

A-51

CPU22ComputeCnfg

Cluster2ShutDri

o~ystm~sgsoSystemMsgs

Foiguet5.T-ee rp fSudw rcs

To~avigA io

CPrJ22BroadCaa

M15 2PIBIU BTB2PIBIU PU2PIBIUI MB2PIBIU

F 12topLPU ifBpLPU CPSopLPU F 2SLPU

F 7,.utDP mutDnnlpt XmthunRpt2 XmihtDnp 3

rou-E oru lou lout

join 2StopLPJ

j~~3hut~na av a on CPU22nodP

Figure A-53. Cluster 2 Shutdown

A-53

inport

StopLPU2

StopLPU
L

Figure A-54. CPU Stop LPUs

A-54

DISCNRCRSTCNT DISCkIRCVFLYT DICRVAS ICRVNDT OBMCAIRDAT

Figur A-5. Stp LP

A-R

Fgr A-56. ustr Sutow

F-5

m154 tb a op dcpUr-t-pp-

Figure A-57. Pass Cluster 1 Shutdown Message

A-57

inport fromdelay

ECALLCLUSTERARB

[MONITORCLHB]
__I_
E XMI TCLHB

I__
E CCBEXECUTION

E join

tQLOADAS Ftodelayj

Figure A-58. Graph of a Cluster Arbitration Node

A -58

in art Ifroinbtbbju

split

RCVRESPONSE RCVDATA

OPENAS1 iDS

~ECUT0O CCECUN

PIBUSO PIBUSI UCEKM

Figure A-59. Cluster Supervisor Load ASI

A-59

startstop

TRANSMITHOTHB

Figure A-60. Hot Backup Arbitration

A-60

tssmsgs tonormalops toe~eartbeat, opl

Figure A-61. Initiate the System Supervisor

A-61

start

Figure A-62. System Supervisor Arbitration

A-62

POWERrJP

F SENSORS

STARTUP

RECONFIGURE

Figure A-63. Top-Level Graph for 4 Clusters

A-63

Power up Powerupo Powerup2

C LU STERO E1CUTR

T(BBsoBBslToBTB3?dsq

ToCPU1MsgO ToCPU1Msg-1 ToPU1s

ToCPU2MsgO To2Mg1 ToCPJ2Msg2

ToMABMegO ToMABMogI - o4Bs]

To1553MsgO To1553Msgl o53Msg2'-

TolIBMag ToCS Msq oCgg

Powerupl

CLUSTER 3

ToBTBMsg

ToCPU1M~sg EINDSTUP

ToCPEJ2Msg

ToMABWBsg-[

Tol553Mag-I ToNorm1p

ToSSMsq

Figure A-64. Startup Graph for 4 Clusters

A-64

PO owrup

I LLOADASOTOMODULES

ToBTB~tsg

2 1os 3 . L O A D A S O
r l ° t ~ °

lARBITRATION lFromClusterl

Figure A-65. Startup Graph of a Cluster

A-65

pwrondlyl $7 UROM15TB 3 TOoaTd4S0

Figure A-66. Graph of SUROM and Active Load

A-66

FigureO ASOCPU3 Grah f SOPasie oa

ToP2A3

FromSUROMI ~AOP32T67ir

romrom hutownj 0rom u townII

1- r ram ulur Io ram u [Fon utow

ro7ro IZromShutd~own14 Ii Fromshutdownlbl

7A

Figure A-68. Sste esgswth4Cutr

A76

FromClus er j I AS Sta~rte as start

roluter2 Fromcl ustero Fromshutdown

I-Tclster2 1 F ToClusterO

F -ToClusteri

ASOStartedO FromShutdornO

BTB

ASOStartedl FromShutdowlnl

4AB!

AS Star 0= FromShutdown

M1553B

ASOStarted3 r FromShutdovn3

F cpU1

Figure A-69. System Messages: 1 Cluster

A-69 *U.S.Govmm"tW Offring ma. ON-8e-12716228l

